
1 Spring 2002 – Group Theory

Problem 1.1. Show that a group of order 2m, where m odd, has a normal subgroup of
order m.

Solution: Let G be a group of order 2m with m odd. Let G act on itself by left
multiplication. This gives

λ : G −→ S2m

by
g 7→ λg : x 7→ g · x.

Notice that ker(λ) = {e} and furthermore λg has no fixed point for g 6= e: g ·x = x ⇒ g = e.
Since λ(G) ∼= G has order 2m, Cauchy’s Theorem says that there is an element λg ∈ λ(G)
of order 2. Write λg as a product of disjoint cycles:

λg = σ1 . . . σr.

Since λg has order two, the σi are all transpositions. Since λg has no fixed point, λg moves
2m points and hence r = m is odd. Therefore

λg /∈ A2m ⇒ λ(G) ( A2m ⇒ A2mλ(G) = S2m,

since |S2m|
|A2m| = 2. Finally by the Second Isomorphism Theorem and the fact that A2m C S2m

(Any σ ∈ A2m is a product of an even number of transpositions, so if τ ∈ S2m, then writing
τ as a product of transpositions, it is clear that τστ−1 is a product of an even number of
transpositions, hence in A2m), we have

S2m

A2m
=

A2mλ(G)
A2m

∼=
λ(G)

A2m ∩ λ(G)
,

so since λ is an isomorphism, ∃H ⊂ G a subgroup such that λ(H) = A2m ∩ λ(G) and [G :
H] = 2 (since [S2m : A2m] = 2). We are done since subgroups of index 2 are automatically
normal (If H ⊂ G is a subgroup of index 2, let G/H = {H, aH}. For any g ∈ G \ H,
gH = aH = Hg and so gHg−1 = H).

• Left Multiplication: G acting on itself by left multiplication is a transitive action with
no fixed point for e 6= g ∈ G.

• Cayley’s Theorem I: Let G be a group s.t. |G| = n, then G ↪→ Sn via

λ : G −→ Sn : g 7→ λg : x 7→ g · x.
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• Cycle Decomposition: τ ∈ Sn, then τ = σ1 . . . σr a product of disjoint cycles (uniquely).

• Transposition Decomposition: τ ∈ Sn, then τ = γ1 . . . γr a product of (not necessarily
disjoint) transpositions, where r (mod 2) is unique.

• Alternating Group: An ⊂ Sn group of even permutations (can be written as an even
number of transpositions), then [Sn : An] = 2 and An C Sn.

• Cauchy’s Theorem: |G| = n and p prime s.t. p | n, then ∃a ∈ G s.t. o(a) = p.

• Second Isomorphism Theorem: If G is a group and A, B ⊂ G are subgroups s.t.
B C G, then

AB

B
∼=

A

A ∩B
.

• Index 2 Subgroups: [G : H] = 2 ⇒ H C G.

Problem 1.2. List, up to isomorphism, all finite abelian groups A satisfying the following:
(i) A is a quotient of Z2, and
(ii) A is annihilated by 18, i.e. 18a = e for all a in A.

Your list should contain a representative of each isomorphism class exactly once. How many
groups are there?

Solution: First note that quotients of Z2 look like Z/aZ × Z/bZ (If H ⊂ Z2 is a
subgroup, then H is finitely generated free of rank 1 or 2. By considering a basis in which
the basis of H is {u1e1, u2e2} (u1, u2 are natural numbers with u2 possibly 0), where {e1, e2}
is a basis of Z2, we see that Z2/H ∼= Z/u1Z×Z/u2Z. If H = 〈(a, 0)〉, then Z2/H = Z/aZ×Z.
This can be visualized as the lattice points of the strip {(x, y) | 0 ≤ x < a}. Similarly, if
H = 〈(a, 0), (0, b)〉, then Z2/H = Z/aZ × Z/bZ can be visualized as lattice points of the
rectangle {(x, y) | 0 ≤ x < a, 0 ≤ y < b}. If H = 〈(a, b)〉 where a 6= 0 and b 6= 0, similar
geometric descriptions can be made.) For a = 1, we must have b | 18, and we get

Z/2Z, Z/3Z, Z/6Z, Z/9Z, Z/18Z.

For a > 1, we must have a | 18 and b | 18. Also, by the Fundamental Theorem of Finitely
Generated Abelian Groups I, a | b (or just note that Z/nZ ∼= Z/kZ × Z/lZ if n = kl and
(k, l) = 1). This gives us

Z/2Z× Z/2Z, Z/2Z× Z/6Z, Z/2Z× Z/18Z,

Z/3Z× Z/3Z, Z/3Z× Z/6Z, Z/3Z× Z/9Z, Z/3Z× Z/18Z,

Z/6Z× Z/6Z, Z/6Z× Z/18Z, Z/18Z× Z/18Z.
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This gives us a total of 16 groups.
Alternatively, we could have just directly applied the Fundamental Theorem of Finitely

Generated Abelian Groups I and found all finite abelian groups which has the biggest
invariant factor a divisor of 18 and which is at most a direct product of two factors.

• Quotients of Z× Z: Quotients of Z2 look like Z/aZ× Z/bZ.

• Z/nZ: Z/nZ ∼= Z/kZ× Z/lZ if n = kl and (k, l) = 1.

• Fundamental Theorem of Finitely Generated Abelian Groups I: Finitely generated
abelian groups look like

Z/u1Z× · · · × Z/umZ× Zr,

where ui|ui+1, 1 ≤ i < m are uniquely determined.

• Free Abelian Groups: An abelian group can be viewed as a “vector space” over Z (or
(sub)lattice points of the plane).

– The notions of generating sets, linear independence, basis, and invariance of
dimension (called rank) carry over.

– A finitely generated abelian group is free if it has a basis.

– Subgroups of free abelian groups of rank n are free of rank ≤ n.

– If {e1, . . . , en} is a basis of Rn, the subgroup generated by {e1, . . . , en} is a free
abelian group of rank n and correspond to the set of vectors with integer coor-
dinates in the basis.

– But a free abelian group of rank n > 0 can contain subgroups of the same rank
that do not coincide with the group, e.g. mZ ( Z for m > 0 also has rank 1.

Problem 1.3. Prove that a group G of order 120 is not simple.

Solution: Suppose G is simple. 120 = 23 · 3 · 5. By Sylow’s Theorem, the number of
Sylow 5–subgroups are

n5 = 1 + 5k = 1, 6, 11, . . .

and must divide 23 · 3 = 24. So the only possibilities are n5 = 1, 6. If n5 = 1, then the
Sylow 5–subgroup is normal, so it must be the case that n5 = 6. Let G act on the set of
Sylow 5–subgroups by conjugation. This induces

λ : G −→ S6 : g 7→ λg : P 7→ gPg−1.

Since G is simple, it must be the case that ker(λ) = {e} or ker(λ) = G. It cannot be the
case that ker(λ) = G, because by Sylow’s Theorem, all Sylow 5–subgroups are conjugate
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so G in fact acts transitively. On the other hand, if ker(λ) = {e}, then G ∼= λ(G) is a
subgroup of S6. Now

A6 ∩ λ(G) C λ(G) ⇒ A6 ∩ λ(G) = {e} or λ(G).

If A6 ∩ λ(G) = {e}, then
|A6||λ(G)|
|A6 ∩ λ(G)|

= |A6λ(G)| > 6!,

which is impossible since A6λ(G) ⊂ S6. So

A6 ∩ λ(G) = λ(G) ⇒ λ(G) ( A6.

Now let A6 act on A6/λ(G) by left multiplication. This induces

γ : A6 −→ S3 : x 7→ γx : yλ(G) 7→ xyλ(G).

We have that

ker(γ) = {x | xyλ(G) = yλ(G),∀y ∈ A6}
= {x | y−1xy ∈ λ(G),∀y ∈ A6}
= {x | x ∈ yλ(G)y−1,∀y ∈ A6}

=
⋂

y∈A6

yλ(G)y−1

⊂ λ(G),

so in particular ker(λ) 6= A6. On the other hand, the action is transitive so it cannot be the
case that ker(λ) = A6. We therefore conclude that ker(λ) C A6, which is a contradiction
since A6 is simple.

• Just Counting: Let G be a group and let A, B be subsets of G. Then

|AB| = |A||B|
|A ∩B|

.

• Cayley’s Theorem II: Let G be a group and H ⊂ G a subgroup. Then G acting on H
by left multiplication induces

λ : G −→ S[G:H] : g 7→ λg : aH 7→ gaH.

The action is transitive, aH is a fixed point of g if and only if g ∈ aHa−1, hence

ker(λ) =
⋂
a∈G

aHa−1.
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• Group Action: Let G be a group. Let X be a set. Let G act on X.

– For x ∈ X, Gx = {gx ∈ X | g ∈ G} ⊂ X is the orbit of x.

– For x ∈ X, Gx = {g ∈ G | gx = x} ⊂ G is the stabilizer of x.

– Xg = {x ∈ X | gx = x} is the set of fixed points of g.

– XG = {x ∈ X | gx = x,∀g ∈ G} ⊂ X is the set of fixed points of G.

– X/G = {Gx | x ∈ X} is the set of orbits of X.

• Size of an Orbit:
|Gx| = [G : Gx].

In fact there is a natural action isomorphism between Gx and G/Gx.

• Orbit Decomposition I: Orbits of X partition X, say have orbits {Gx1 , . . . , Gxn}, then

|X| =
∑

i

|Gxi|.

• Orbit Decompositioni II:
|X| = |XG|+

∑
k

|Gxk|,

where the sum are now only over orbits of size > 1.

• Burnside’s Formula:
|X/G| = 1

|G|
∑
g∈G

|Xg|.

• Sylow’s Theorem: Let G be a finite group of order |G| = pn ·m s.t. p - m.

(i) Sylow p–subgroups exist.

(ii) Any p–subgroup of G is contained in some Sylow p–subgroup.

(iii) All Sylow p–subgroups are conjugate.

Let np denote the number of Sylow p–subgroups. Then

(iv) np ≡ 1 modulo p.

(v) np | m.

– To prove (i), first show a non–trivial p–group G has non–trivial center by letting
G act on 2G (subgroups of G) by conjugation. Then let G be a general group
and act on itself by conjugation and proceed by induction on |G|.
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– To prove (ii), let S ⊂ G be a Sylow p–subgroup, S1 any p–subgroup, and let
S1 act on G/S by left multiplication and observe that S1 has at least one fixed
point.

– To prove (iii), let S, S1 be Sylow p–subgroups and proceed as above.
– To prove (iv), let S be a Sylow p–subgroup and C(S) the class of subgroups

conjugate to S. Let S act on C(S) by conjugation and observe that the only
fixed point is S itself.

– To prove (v), let S be a Sylow p–subgroup. Let G act on 2G by conjugation and
observe that np = |G · S| = [G : NG(S)] | m.

• Simplicity of An: An is simple for n ≥ 5.

2 Winter 2002 – Groups

Problem 2.1. Let G be a free abelian group of rank n for a positive integer n (therefore
G ∼= Zn as groups).

(a) Prove for a given integer m > 1, there are only finitely many subgroups H of index
m in G;

(b) Find a formula of the number of subgroups of G of index 3. Justify your answer.

Solution: (a) If H ⊂ G is a subgroup of index m. Then G acting on G/H by left
multiplication gives

λH : G −→ S[G:H] = Sm.

This in turn gives a map

φ : {subgroups of G of index m} −→ {G → S[G:H]} : H 7→ λH

The latter set is finite since any λ : G −→ Sm is determined by λ(g1), . . . , λ(gn), where
G = 〈g1, . . . , gn〉, and hence |{G → S[G:H]}| ≤ (m!)n. So it suffices to show that φ is
one-to-one. For this we observe that

ker(λH) =
⋂
g∈G

gHg−1 = H,

since G is abelian. Therefore if H 6= H ′ are two subgroups of index m, ker(λH) 6= ker(λH′),
which implies that λH 6= λH′ .

(b) I screwed up this problem at first, but in any case, consider maps from Zn onto Z/3Z
(where do the generators go?). The kernel of such a map would correspond to a subgroup
of index 3.
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Problem 2.2. Prove or disprove: there exists a finite abelian group G whose automorphism
group has order 3.

Solution: This is not true. Let G be a finite abelian group with Aut(G) ∼= Z/3Z. Then

φ : G −→ G : x 7→ x−1

is an automorphism since G is abelian (so φ(xy) = y−1x−1 = x−1y−1 = φ(x)φ(y)). But φ
clearly has order 2 and since 2 - 3, it must be the case that φ ≡ IdG. This implies that
x = x−1, for all x ∈ G. An application of the Fundamental Theorem of Finitely Generated
Abelian Groups gives that G ∼= (Z/2Z)n, some n. Every non–zero element in (Z/2Z)n has
order 2, and since any automorphism is determined by its action on the the n generators
{(1, 0, . . . , 0), . . . , (0, . . . , 0, 1)}, we see that |Aut((Z/2Z)n)| = (2n − 1)n. Checking n = 1, 2,
we have a contradiction.

Problem 2.3. Let S and G be p–groups (with G 6= {e}), and assume that S acts on G
by automorphisms. Show that the fixed subgroup GS = {g ∈ G | s(g) = g,∀s ∈ S} is
non–trivial (i.e., is not the trivial subgroup {e}).

Solution: We use the Orbit Decomposition Formula:

|G| = |GS |+
∑
gi

|Sgi|,

where the sum is over disjoint orbits of size bigger than 1. Next we note that |Sgi| = [S : Sgi ],
where

Sgi = {s ∈ S | sgi = gi}

is the stabilizer of gi. The gi’s are not fixed points of the action by S, so

[S : Sgi ] = |Sgi| > 1 ⇒ p | [S : Sgi ]

since S is a p-group. Also, p | |G| since G is a p-group, so we conclude that p | |GS |, which
implies that GS is non–trivial.

3 Fall 2002 – Group Theory

Problem 3.1. Let A be a free abelian group of rank n. If H is a subgroup of A, show that
H is free abelian of rank n if and only if A/H is finite.

Solution: First note that if H is a subgroup of a free abelian group A, then

7



a) H is free abelian of rank ≤ n (This is proved by induction. n = 0 is trivial. For
n > 0, let {e1, . . . , en} be a basis for A and let A1 = 〈e1, . . . , en−1〉. This is free abelian of
rank n−1, so H1 = H ∩A1 is free abelian of rank m ≤ n−1 by induction. Let {f1, . . . , fm}
be a basis for H1. The last coordinates of elements of H in the basis {e1, . . . , en} form a
subgroup of Z and hence has the form kZ, for some k. If k = 0 then we are done. If k > 0,
then let fm+1 be an element of H with last coordinate k. Then {f1, . . . , fm, fm+1} is a basis
for H) and that

b) there is a basis {e1, . . . , en} of A and natural numbers u1, . . . , um s.t. {u1e1, . . . , umem}
is a basis of H (To prove this, let {f1, . . . , fm} be a basis of H and {e1, . . . , en} a basis of A.
There is an integral n×m matrix C of rank m such that (*) (f1, . . . , fm) = (e1, . . . , en)C.
There is also an inductive procedure (like Smith Normal Form but easier) which turns any
integral matrix into a “diagonal” matrix using “elementary” operations. Applying the el-
ementary operations to C and applying the appropriate ones to the basis of H and A will
turn C into some diag(u1, . . . , um) while preserving (*). This gives exactly that fi = uiei).

⇐=: Suppose H ⊂ A is free abelian of rank n. Let {e1, . . . , en} and {u1, . . . , un} be as
in b). Let

φ : A −→ Zn : a 7→ (a1, . . . , an),

where (a1, . . . , an) are the coordinates of a in the basis {e1, . . . , en}. Under φ, we have that

A/H ∼= Zn/(u1Z× · · · × unZ) ∼= Z/u1Z× · · · × Z/umZ,

where the last ∼= comes from the fact that in general (A1 × · · · × An)/(B1 × · · · × Bn) ∼=
A1/B1 × · · · ×An/Bn, if Bi C Ai, 1 ≤ i ≤ n.

=⇒: Conversely, suppose A/H is finite abelian. H is free abelian by a). Assume
towards a contradiction that H is of rank m < n. Let {e1, . . . , en} and {f1, . . . , fm} satisfy
the conclusion of b) and let φ be as in the previous paragraph, then under φ,

A/H ∼= Zn/(u1Z× · · · × umZ) ∼= (Z/u1Z× · · · × Z/umZ)× Z× · · · × Z︸ ︷︷ ︸
(n-m)–times

.

But the group on the right hand side is clearly infinite, a contradiction.

• Quotient of Direct Product: If A1, . . . , An are groups, then

(A1 × · · · ×An)/(B1 × · · · ×Bn) ∼= A1/B1 × · · · ×An/Bn,

if Bi C Ai, 1 ≤ i ≤ n. In particular this is always true if the Ai’s are all abelian.

• Subgroup of Free Abelian Group I: A subgroup of a free abelian group of rank n is
free abelian of rank ≤ n.
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• Subgroup of Free Abelian Group II: If A is a free abelian group of rank n and H ⊂ A
is a subgroup, then there is a basis {e1, . . . , en} of A and natural numbers u1, . . . , um

s.t. {u1e1, . . . , umem} is a basis of H.

Problem 3.2. Let G be a finite group of order 108. Show that G has a normal subgroup
of order 9 or 27.

Solution: 108 = 22 · 33. By Sylow’s Theorem, n3 = 1 + 3k = 1, 4, 7, · · · | 22, where n3

is the number of 3–Sylow subgroups. If n3 = 1, then again by Sylow’s Theorem, we know
that the unique 3–Sylow subgroup is normal of order 33 = 27. Suppose then that n3 = 4.
Let P1, P2, P3, P4 denote the four 3–Sylow subgroups. Basic counting gives that

|P1P2| =
|P1||P2|
|P1 ∩ P2|

=
33 · 33

|P1 ∩ P2|
≤ 33 · 22.

Since P1 6= P2, we conclude that |P1 ∩ P2| = 32. Similarly |Pi ∩ Pj | = 32,∀i 6= j. Next let
P ≡ P1∩P2 act on C = {P1, P2, P3, P4} by conjugation. The Orbit Decomposition Formula
gives:

4 = |P C |+
∑

[P : NP (Pi)],

where P C denotes the fixed set, the sum is over all orbits of size bigger than one and NP (Pi)
is the subgroup of elements of P which normalizes Pi. Since P is a 3–group, 3 divides each
term in the sum. But P ⊂ P1, P2 and so we have at least 2 fixed points. This implies that
the sum is empty and therefore

P ⊂ NG(P3), NG(P4).

P3 is normal in NG(P3) and hence is the unique 3–Sylow subgroup by Sylow’s Theorem.
Again by Sylow’s Theorem this implies that P ⊂ P3. Similarly we conclude P ⊂ P4. This
together with the previous counting means that Pi ∩ Pj = P,∀i, j and therefore

P = P1 ∩ P2 = P1 ∩ P2 ∩ P3 ∩ P4.

Finally we notice that

gPg−1 ⊂ gP1g
−1 ∩ gP2g

−1 ∩ gP3g
−1 ∩ gP4g

−1 = P,∀g ∈ G,

where the equality follows from the conjugacy part of Sylow’s Theorem. So P C G and
|P | = 9.

• Normal p–Group: Let G be a group and p | |G|. If P is the intersection of all p–Sylow
subgroups of G, then P is normal.
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Problem 3.3. Let G be a finite group and P a p–Sylow subgroup. Let NG(P ) be the
normalizer of P in G. Show that:

a) P is the unique p–Sylow subgroup of NG(P ) (Don’t quote a theorem that this is
true!)

b) NG(P ) is self–normalizing in G.

Solution: a) Suppose Q is a p–Sylow subgroup of NG(P ). Let Q act on NG(P )/P by
left multiplication. The Orbit Decomposition Formula says:

[NG(P ) : P ] = |QNG(P )/P |+
∑

QgP ,

where QNG(P )/P denotes the set of fixed points, the sum is over all orbits of size bigger than
one and QgP is the stabilizer of gP . Q is a p–group so p divides each term in the sum, but
P is p–Sylow so p - [NG(P ) : P ]. This implies there is at least one fixed point. So say gP
is a fixed point, then

(∀q ∈ Q)(qgP = gP ⇒ g−1qgP = P ⇒ q ∈ gPg−1) =⇒ Q = gPg−1,

where the last implication follows since |P | = |Q|. But P C NG(P ) so Q = gPg−1 = P .
b) Suppose NG(P ) were not self–normalizing, then M ≡ NG(NG(P )) ) NG(P ) and

P C NG(P ) C M . Let g ∈ M , then gPg−1 ⊂ NG(P ), hence must be equal to P by a). This
implies that P C M , which contradicts the fact that NG(P ) is the maximal subgroup of G
which normalizes P .

4 Winter 2003 – Groups

Problem 4.1. List, up to isomorphism, all abelian groups A which satisfy the following
three conditions:

(i) A has 108 elements;
(ii) A has an element of order 9;
(iii) A has no element of order 24.

Solution: 108 = 22 · 33. If G is an abelian group of order 108, then the Fundamental
Theorem of Finitely Generated Abelian Groups II says that

G ∼= P2 × P3,

where P2 and P3 are the Sylow 2 and 3 subgroups of G. We have that

2 = 0 + 2 = 1 + 1, 3 = 3 + 0 = 1 + 2,
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so we have the following possibilities:

Z/4Z× Z/27Z ∼= Z/108Z

Z/4Z× Z/3Z× Z/9Z ∼= Z/3Z× Z/36Z

Z/2Z× Z/2Z× Z/27Z ∼= Z/2Z× Z/54Z

Z/2Z× Z/2Z× Z/3Z× Z/9Z ∼= Z/6Z× Z/18Z,

where of course the form the groups take on on the right hand side of ∼= are the form used
in Fundamental Theorem of Finitely Generated Abelian Groups I (To go from one form to
the other, we used the fact that if (k, l) = 1, then Z/kZ×Z/lZ ∼= Z/klZ: Both groups have
the same order so it suffices to produce an element in Z/kZ×Z/lZ which has order kl, but
this is easy, take e.g. (1, 1)). Next we notices that it is impossible for any group of order
108 to have an element of order 24 by Lagrange’s Theorem since 24 - 108. Finally from the
form of the groups on the right hand side of ∼=, it is easy to see that all four groups we have
listed satisfy item (ii) (e.g. (0,4) is an element of order 9 in Z/3Z× Z/36Z).

• Lagrange’s Theorem: Let G be a finite group and H its subgroup. Then

|G| = [G : H]|H|.

In particular |H| | |G| and hence if x ∈ G |〈x〉| | |G| so the order of any element in G
must divide |G|.

• Fundamental Theorem of Finitely Generated Abelian Groups II: if G is a finite abelian
group s.t. |G| = n = pα1

1 pα2
2 . . . pαm

m , then

G ∼= A1 ×A2 × · · · ×Am,

where |Ai| = pαi . In addition,

Ai
∼= Z/pi

βi1 Z× · · · × Z/pi
βik Z,

where βi1 + βi2 + · · ·+ βik = αi.

• Z/nZ: Z/nZ ∼= Z/kZ× Z/lZ if n = kl and (k, l) = 1.

Problem 4.2. Let N ≥ 1 be a positive integer. Show that a finitely generated group G
has only finitely many subgroups of index at most N .
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Solution: This follows from the fact that for each integer n there are only finitely
many subgroups of index n. Suppose we are given a subgroup H ⊂ G of index n. Label
the cosets of H as {a1H, . . . , anH} such that a1 = e. We let G act on the cosets of H by
left multiplication, which induces

λH : G −→ Sn : g 7→ λH(g) : aH 7→ gaH.

G is finitely generated, so say G = 〈g1, . . . , gm〉. The map λH is completely determined
by {λH(g1), . . . , λH(gm)} and hence there are only (n!)m possible such maps. Hence it
suffices to show that if H 6= H ′ are two subgroups of G of index n, then λH 6= λH′ . To
this end we observe that the stabilizer of the coset eH of the above action is exactly H
(GeH = {g ∈ G | gH = H} = H). So if H 6= H ′, then it is the case (due to our labeling of
eH as the first coset) that

{g | λH(g) fixes 1} 6= {g | λH′(g) fixes 1},

and therefore λH 6= λH′ .

Problem 4.3. Let N ≥ 2 be an integer. Show that a subgroup of index 2 in SN is AN .
Here SN and AN are the symmetric and alternating groups for N , respectively.

Solution: Let σ ∈ SN . Then σ = τ1 . . . τm a product of transpositions (not necessarily
unique): If σ(1) = k1, . . . , σ(N) = kN , then (1 k1)σ will send 1 to 1. Similarly, there is a
transposition that will ensure (1 k1)σ sends 2 to 2, etc. Therefore

(∃τ1, . . . , τm)τm . . . τ1σ = Id,

whence σ = τ1 . . . τm since a transposition is its own inverse. Next σ ∈ SN is even/odd if it
can be written as a product of an even/odd number of transpositions. This is well defined:
if σ = τ1 . . . τm = γ1 . . . γl as products of transpositions, consider the polynomial

P (σ) =
∏
i<j

(Xσ(i) −Xσ(j)).

We observe that P (τσ) = −P (σ), where τ is a transposition. From this we conclude that

P (σ) = (−1)mP (Id) = (−1)lP (Id),

whence m ≡ l (mod 2). Define sgn(σ) = ±1, depending on whether σ is even or odd. Now
let

φ : SN −→ {±1} : σ 7→ sgn(σ).
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This is a homomorphism since if σ, τ ∈ SN , sgn(στ) = sgn(σ)sgn(τ): If sgn(σ) = sgn(τ),
then sgn(στ) = 1, otherwise sgn(στ) = −1. Finally, the kernel of φ is exactly AN , so by
the First Isomorphism Theorem

SN/AN
∼= {±1},

where we view {±1} as the group with two elements with 1 equal to the identity. So AN is
a subgroup of index 2 in SN .

• First Isomorphism Theorem: Let f : G −→ H be a group homomorphism. Then

Im(f) ∼= G/ker(f).

• The Symmetric Group on N Objects: The set of permutations of N objects form a
group under composition called SN .

– SN is generated by transpositions (each τ ∈ SN can be written as γ1 . . . γl a
product of transpositions where l is unique modulo 2).

– The set of even permutations form a group of index 2 called AN .

– Each τ ∈ SN can be written as a product of disjoint cycles, where a cycle
σ = (i1 . . . iN ) means σ(i1) = i2, σ(i2) = i3, . . . , σ(iN ) = i1.

– The sgn of a cyclic permutation of length p is p− 1.
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