1 Spring 2002 — Linear Algebra

Problem 1.1. Let ¢ : M3(Q) — M3(Q) be the map sending m to ¢(m) = m? + 3m + 3.
Show that ¢(m) # 0 for all m € M3(Q).

Solution: Suppose ¢(m) = 0 for some m € M3(Q). Let f = 2? + 3z + 3. Then
mq(m) | f, where mq(m) is the minimal polynomial of m. Since f is irreducible by
Eisenstein’s Criterion, it must be the case that mg(m) = f. Now let g be the characteristic
polynomial of m, then f | g. Since f is irreducible over Q this implies that g = f*. But
deg(g) = 3 # 2k = deg(f*) for any (positive) integer k. This is a contradiction so we
conclude ¢(k) # 0,Ym € M3(Q). O

e Minimal Polynomial: Let T be a linear operator on a finite dimensional vector space
V over a field F'. The minimal polynomial p of T is the monic generator of the ideal
of polynomials which annihilate T', i.e.

— p is a monic polynomial over F'.
- p(T)=0.
— Any g such that ¢(T") = 0 is a multiple of p.

Similarly define the minimal polynomial of a matrix A. Notice that

— Similar matrices have the same minimal polynomial (they represent the same
linear operator in different bases).

— The minimal polynomial is invariant under field extensions, i.e. if F' C F}, then
the minimal polynomial of A regarded as an element of M, (F) is the same as
that of A regarded as an element of M, (F7).

e Characteristic Polynomial: Let V' be a vector space over some field F' and let A €
M, (F'). The polynomial
f =det(zl — A)

is called the characteristic polynomial of A. The roots of f are the characteristic
values (or eigenvalues) of A in F. ¢ is a characteristic value if and only if there exists
some 0 # « € V such that

Aa = ca.

— Similar matrices have the same characteristic polynomial, so the characteric poly-
nomial of an operator T is well-defined (take the matrix representation in any
basis).

— The characteristic polynomial is a monic polynomial of degree n.



e Cayley—Hamilton: The minimal polynomial divides the characteristic polynomial.
Moreover, the roots of the two polynomials are the same.

e Factorization of Polynomials: If F' is an algebraically closed field, then all polynomials
factor into linear terms. In particular, if T is a linear operator of a vector space over
F, then F' contains all the eigenvalues of T'.

e Invariance Under Field Extensions: The following things are invariant under field
extensions.
— The minimal polynomial of a matrix A.
— The quotient and remainder from the Division Algorithm.
— The (monic) greatest common divisor of two polynomials (since they can be
obtained from the Euclidean Algorithm).
e Eisenstein’s Criterion: Let p be a prime in Z and let
fx)=2"+ap 12"+ -+ ayx +ag € Z[z],n > 1.
Suppose
p|a;,0<i<nbutp®ta.
Then f(x) is irreducible in both Z[z] and Q|x].

Problem 1.2. Let A be a real matrix with column vectors Ay, As, ..., A,. If the A; are
mutually orthogonal, then

et Al =T 1451
j=1

This follows because |det(*A - A)| = |det A|> and ‘A - A is a diagonal matrix with diagonal
entries |A1|?,|A2]?,...,|An|?. Prove that a general matrix satisfies the inequality

det A| < T 145-

j=1
Hint: apply the Gram—Schmidt orthogonalization process to the columns.

Solution: We apply the Gram—Schmidt orthogonalization process to the columns (with-
out normalizing) to obtain Aj, As, ..., Ay such that A;’s are mutually orthogonal and have
the same span as the A;’s. We have

<Ak7 Aj>

A=Ay, A=Ay - Z (A, A
WV RE )

1<j<k

Aj,1<k§n,



where (v, w) denotes the inner product of v and w. If (vi,ve,...,v,) =v € R", then

lv]| = Vi Fv2+ -+ v, = (v, 0).

Let’s compute || Az||:
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< [l Axll?,

since the sum in the penultimate line has all positive terms. The A;’s are orthogonal, so if
A is the matrix with columns A;, then

det(4) =[] 14;-

J=1

Next observe that to transform A into A involves multiplying A by elementary matrices
with determinant 1, hence since the determinant function is multiplicative, we have

|det(A) = |det(AE1Ey ... E,)| = |det(A)det(Ey) ... det(E,)| = det(A),

where E; ... E, are the elementary matrices we multiply by to transform A into A (e.g. to

turn As into As, we would multiply A on the right by the matrix which is the identity matrix

with éﬁf’ﬁii times the second column subtracted from the first column; the resulting matrix

still has determinant 1). Finally, by the inequality in norms we derived (|Ag| < |Ax|) we
get

det(A)] = ] 14,1 < TT 1441

J=1 J=1

e Determinant: Let K be a commutative ring with identity. Suppose
D:M,(K) — K.
Then D is called a determinant function if

— D is n-linear (in rows).



— D is alternating (i.e. D(A) = 0 if two rows are the same and D(A) = —D(A') if
A’ is obtained from A by interchanging two rows.

— D(I) = 1, where [ is the identity matrix.
In addition, the following are true.
— If A, B € M,(K), then
det(AB) = (detA)(det = B).
— If A? is the transpose of A (i.e. rows of A! are columns of A and vice versa), then
det(A") = det(A),

so in particular the determinant is also linear in the columns.

— If B is obtained from A by adding a multiple of one row (column) of A to another,
then
det(B) = det(A).

— Suppose we have a matrix in block form, then

det< 4z ) — (det A)(det B).

— The following is of theoretical importance:

det(A) = D(A) =) (sgn 0)A(1,01)... A(n,on),
where A(i, j) is the i entry of A.
— The determinant is usually calculated by (cofactor expansion):

n

det(A) = Z(—l)iJrinj det[A(i]7)],

i=1

where j is the index of some fixed row or column and A(i|j) is the (n—1) x (n—1)
matrix obtained from A by deleting the i*" row and j** column.

e Inner Product: Let F =R or C. Let V be a vector space over F. An inner product
on V is a function
(,): VXV —F:(u,v) — (u,v)

such that for all u,v,w € V and ¢ € F', we have



,v) = (v,u), where bar denotes complex conjugation
) > 0if u 0.

Given an inner product, a norm can be defined as
ol = v/ {v,v).

The norm satisfies the following properties:

[ev]| = [e]||v]|

— |lv]] >0 for v #0

[, )| < JJull[lv]| (or [{u, v)]* < (u,u)(v,v))
|u+ ol < lull + [Jv]|

The third item is called the Cauchy—Schwarz Inequality and the fourth item is called
the Triangle Inequality.

e Gram—Schmidt: Let V be an inner product space and v1,...,v, be any independent
vectors in V. Then the set of vectors {01, ...,4,} given by
k—1 i - k— 1 (v,
~ ~ ) ks
U1 = vy, Uk:Uk_Z<Ukv ~‘7 > ]
= 15 ||UJ|| = UJ?”J
form an orthogonal set with the same span as vy,...,vy,.

Problem 1.3. Let T' € M3(C) and let A be the centralizer of T in M3(C). Show that
dim (A7) > 3 and describe (up to similarity) the linear transformations 7" such that dim(.Ar)
= 3.

e Linear Operators ~» F[z]-Module: Let V be a finite-dimensional vector space over
some field F. Let T : V — V be a linear transformation. If v € V, define

x-v="T(v)

So if f(x) € F[z],
f(@) v =[f(T)](v).

This gives V' a F[z]-module structure.



o Fla]/(f(x)): If
f(x)=ab +bp_ 12 L+ bz + by € Fla],
then
{1,7,7%..., 771}
is a basis for F|z]|/(f(x)) viewed as an F—vector space. Moreover, in this basis, T’
(multiplication by ) acts like:
1—z

T T2

k-1 =k

T =t = —bo — blf — e — bk_lfk_l.

The corresponding matrix, a k X k matrix called the companion matrix of f(z), and
denoted Cy(,), looks like

0 0 —bg

1 0 —b1
Cf(z) = 0 1 :

0 0 ... 1 —bp_

e Rational Canonical Form: V' is finite dimensional over F', but F[x] is infinite dimen-
sional over F', hence V must be a torsion F'[z]-module. By the Fundamental Theorem
of Finitely Generated Modules over a PID, we must then have

V= Flz]/(ai(2) @ - © Flz]/(am())
as F[z]-modules and such that
ar(z) | az(z) | -+ [ am ().

By the previous item (and since we have a direct sum), we then see that there is a
basis for T" with corresponding matrix

Cal (z)
Cas(a)

Cam (z)

This is the Rational Canonical Form of T'.



e Observations and Consequences: By the uniqueness statement of the fundamental
theorem, given a linear transformation 7', the rational canonical form of 7" is unique.
Given a matrix A, we can define Tv = Av, hence we immediately obtain:

— Every matrix is similar to a matrix in rational canonical form.

— 2 matrices are similar if and only if they have the same rational canonical form.
— The rational canonical form is invariant under field extensions.

— Similarity of matrices is invariant under field extensions.

Let A be an n x n matrix over F. By considering the rational canonical form of A,
we also learn something about the minimal and characteristic polynomials of A.

From the decomposition Fz] = F[z]/(ai1(x)) @ -+ @ Flx]/(am(x)), we see that
ma(x) = am(x).

— A quick calculation shows the characteristic polynomial of a C,(,) is exactly a(x).
Hence we have (using the fact that similar matrices have the same characteristic
polynomial)

ca(z) = a1(x)az(z) ... am(x),

where c4(x) is the characteristic polynomial of A.

From the previous item the Cayley—Hamilton Theorem is immediate.
— More precisely,
ca(z) | (ma(@))*,

for some positive integer k. In particular, c4(z) and m4(z) have the same roots.

e Computational Aspects: Let A be a matrix. To find the rational canonical form,
apply elementary row and column operations to I — A to put it into Smith Normal

Form:
1

ay(x)
az ()

am ()

The a;(x)’s are then the invariant factors.



The Algebraically Closed Case: Now suppose the field F' is algebraically closed. Then
the invariant factors ai(z), ..., am(x) factor completely into linear terms (equivalently,
F contains all eigenvalues of T'). In F[z]/(x — A\)*, the elements

{va = A (E - )‘)27 ) (T - )‘)kil}
form a basis. In this basis, T acts like (write z = A+ (z — \)):

1=A1+(@—N)
(T —N\) =AT =\ + (T —\)?

@T-Nte @ - Nt @ - N =Xz - L
The corresponding matrix, a k£ X k matrix called a Jordan Block, looks like

A
1 A

1
1 A
Jordan Canonical Form: By the Fundamental Theorem of Finitely Generated Modules
over PID II, we then have that
VFa)/(z—A)M e @ Flz]/(x — M),

where \;’s are the eigenvalues of T'. By the previous item, we then see that there is a
basis for T" with corresponding matrix

J1
J2
Ji
where each J; is a k; x k; Jordan block. This is the Jordan Canonical Form of T.

Observations and Consequences: Up to permutation of the Jordan blocks, the Jordan
Canonical Form is unique.

— Every matrix is similar to a matrix in Jordan Canonical Form.



— 2 matrices over a field F' are similar if and only if they have the same Jordan
Canonical Form over the algebraic closure of F.

— If a matrix A is similar to a diagonal matrix D, then D is the Jordan Canonical
Form of A.

— The Jordan Canonica Form is NOT invariant under field extensions.

By considering the Jordan Canonical Form, we also have a criterion for diagonaliz-
ability: A matrix A is diagonalizable if and only if m 4(x) has no repeated roots.

— A quick calculation shows that the minimal polynomial of a diagonal matrix has
as roots exactly the distinct elements along the diagonal (no repeats).

— Conversely, the minimal polynomial of a Jordan block of size k with eigenvalue
A has minimal polynomial (z — A)* (think F[z]/(z — A)¥). The minimal polyno-
mial of a Jordan Canonical Form is the least common multiple of the minimal
polynomials of the Jordan blocks (use Smith Normal Form). The result follows.



