
1 Spring 2002 – Linear Algebra

Problem 1.1. Let ϕ : M3(Q) → M3(Q) be the map sending m to ϕ(m) = m2 + 3m + 3.
Show that ϕ(m) 6= 0 for all m ∈ M3(Q).

Solution: Suppose ϕ(m) = 0 for some m ∈ M3(Q). Let f = x2 + 3x + 3. Then
mQ(m) | f , where mQ(m) is the minimal polynomial of m. Since f is irreducible by
Eisenstein’s Criterion, it must be the case that mQ(m) = f . Now let g be the characteristic
polynomial of m, then f | g. Since f is irreducible over Q this implies that g = fk. But
deg(g) = 3 6= 2k = deg(fk) for any (positive) integer k. This is a contradiction so we
conclude ϕ(k) 6= 0,∀m ∈ M3(Q).

• Minimal Polynomial: Let T be a linear operator on a finite dimensional vector space
V over a field F . The minimal polynomial p of T is the monic generator of the ideal
of polynomials which annihilate T , i.e.

– p is a monic polynomial over F .

– p(T ) = 0.

– Any g such that g(T ) = 0 is a multiple of p.

Similarly define the minimal polynomial of a matrix A. Notice that

– Similar matrices have the same minimal polynomial (they represent the same
linear operator in different bases).

– The minimal polynomial is invariant under field extensions, i.e. if F ⊂ F1, then
the minimal polynomial of A regarded as an element of Mn(F ) is the same as
that of A regarded as an element of Mn(F1).

• Characteristic Polynomial: Let V be a vector space over some field F and let A ∈
Mn(F ). The polynomial

f ≡ det(xI −A)

is called the characteristic polynomial of A. The roots of f are the characteristic
values (or eigenvalues) of A in F . c is a characteristic value if and only if there exists
some 0 6= α ∈ V such that

Aα = cα.

– Similar matrices have the same characteristic polynomial, so the characteric poly-
nomial of an operator T is well–defined (take the matrix representation in any
basis).

– The characteristic polynomial is a monic polynomial of degree n.
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• Cayley–Hamilton: The minimal polynomial divides the characteristic polynomial.
Moreover, the roots of the two polynomials are the same.

• Factorization of Polynomials: If F is an algebraically closed field, then all polynomials
factor into linear terms. In particular, if T is a linear operator of a vector space over
F , then F contains all the eigenvalues of T .

• Invariance Under Field Extensions: The following things are invariant under field
extensions.

– The minimal polynomial of a matrix A.

– The quotient and remainder from the Division Algorithm.

– The (monic) greatest common divisor of two polynomials (since they can be
obtained from the Euclidean Algorithm).

• Eisenstein’s Criterion: Let p be a prime in Z and let

f(x) = xn + an−1x
n−1 + · · ·+ a1x + a0 ∈ Z[x], n ≥ 1.

Suppose
p | ai, 0 ≤ i < n but p2 - a0.

Then f(x) is irreducible in both Z[x] and Q[x].

Problem 1.2. Let A be a real matrix with column vectors A1, A2, . . . , An. If the Aj are
mutually orthogonal, then

|det A| =
n∏

j=1

|Aj |.

This follows because |det(tA ·A)| = |det A|2 and tA ·A is a diagonal matrix with diagonal
entries |A1|2, |A2|2, . . . , |An|2. Prove that a general matrix satisfies the inequality

|det A| ≤
n∏

j=1

|Aj |.

Hint: apply the Gram–Schmidt orthogonalization process to the columns.

Solution: We apply the Gram–Schmidt orthogonalization process to the columns (with-
out normalizing) to obtain Ã1, Ã2, . . . , ÃN such that Ãi’s are mutually orthogonal and have
the same span as the Ai’s. We have

Ã1 = A1, Ãk = Ak −
∑

1≤j<k

〈Ak, Aj〉
〈Aj , Aj〉

Aj , 1 < k ≤ n,
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where 〈v, w〉 denotes the inner product of v and w. If (v1, v2, . . . , vn) = v ∈ Rn, then

‖v‖ =
√

v1 + v2 + · · ·+ vn =
√
〈v, v〉.

Let’s compute ‖Ãk‖:

‖Ãk‖2 = 〈Ãk, Ãk〉 = ‖Ak‖2 − 2
∑

1≤j<k

|〈Ak, Aj〉|2

‖Aj‖2
+

∑
1≤j<k

|〈Ak, Aj〉|2

‖Aj‖2

= ‖Ak‖2 −
∑

1≤j<k

|〈Ak, Aj〉|2

‖Aj‖2

≤ ‖Ak‖2,

since the sum in the penultimate line has all positive terms. The Ãi’s are orthogonal, so if
Ã is the matrix with columns Ãi, then

det(Ã) =
n∏

j=1

|Ãj |.

Next observe that to transform A into Ã involves multiplying A by elementary matrices
with determinant 1, hence since the determinant function is multiplicative, we have

|det(Ã) = |det(AE1E2 . . . En)| = |det(A)det(E1) . . .det(En)| = det(A),

where E1 . . . En are the elementary matrices we multiply by to transform A into Ã (e.g. to
turn A2 into Ã2, we would multiply A on the right by the matrix which is the identity matrix
with 〈A2,A1〉

〈A1,A1〉 times the second column subtracted from the first column; the resulting matrix

still has determinant 1). Finally, by the inequality in norms we derived (|Ãk| ≤ |Ak|) we
get

|det(Ã)| =
n∏

j=1

|Ãj | ≤
n∏

j=1

|Aj |.

• Determinant: Let K be a commutative ring with identity. Suppose

D : Mn(K) −→ K.

Then D is called a determinant function if

– D is n–linear (in rows).
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– D is alternating (i.e. D(A) = 0 if two rows are the same and D(A) = −D(A′) if
A′ is obtained from A by interchanging two rows.

– D(I) = 1, where I is the identity matrix.

In addition, the following are true.

– If A,B ∈ Mn(K), then

det(AB) = (detA)(det = B).

– If At is the transpose of A (i.e. rows of At are columns of A and vice versa), then

det(At) = det(A),

so in particular the determinant is also linear in the columns.

– If B is obtained from A by adding a multiple of one row (column) of A to another,
then

det(B) = det(A).

– Suppose we have a matrix in block form, then

det
(

A B
0 C

)
= (det A)(det B).

– The following is of theoretical importance:

det(A) ≡ D(A) =
∑

σ

(sgn σ)A(1, σ1) . . . A(n, σn),

where A(i, j) is the ijth entry of A.

– The determinant is usually calculated by (cofactor expansion):

det(A) =
n∑

i=1

(−1)i+jAij det[A(i|j)],

where j is the index of some fixed row or column and A(i|j) is the (n−1)×(n−1)
matrix obtained from A by deleting the ith row and jth column.

• Inner Product: Let F = R or C. Let V be a vector space over F . An inner product
on V is a function

〈, 〉 : V × V −→ F : (u, v) 7→ 〈u, v〉

such that for all u, v, w ∈ V and c ∈ F , we have
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– 〈u + v, w〉 = 〈u, w〉+ 〈v, w〉
– 〈cu, v〉 = c〈u, v〉
– 〈u, v〉 = 〈v, u〉, where bar denotes complex conjugation

– 〈u, u〉 > 0 if u 6= 0.

Given an inner product, a norm can be defined as

‖v‖ =
√
〈v, v〉.

The norm satisfies the following properties:

– ‖cv‖ = |c|‖v‖
– ‖v‖ > 0 for v 6= 0

– |〈u, v〉| ≤ ‖u‖‖v‖ (or |〈u, v〉|2 ≤ 〈u, u〉〈v, v〉)
– ‖u + v‖ ≤ ‖u‖+ ‖v‖

The third item is called the Cauchy–Schwarz Inequality and the fourth item is called
the Triangle Inequality.

• Gram–Schmidt: Let V be an inner product space and v1, . . . , vn be any independent
vectors in V . Then the set of vectors {ṽ1, . . . , ṽn} given by

ṽ1 = v1, ṽk = vk −
k−1∑
j=1

〈
vk,

ṽj

‖ṽj‖

〉
ṽj

‖ṽj‖
= vk −

k−1∑
j=1

〈vk, ṽj〉
〈ṽj , ṽj〉

ṽj

form an orthogonal set with the same span as v1, . . . , vn.

Problem 1.3. Let T ∈ M3(C) and let AT be the centralizer of T in M3(C). Show that
dim(AT ) ≥ 3 and describe (up to similarity) the linear transformations T such that dim(AT )
= 3.

• Linear Operators  F [x]–Module: Let V be a finite–dimensional vector space over
some field F . Let T : V → V be a linear transformation. If v ∈ V , define

x · v = T (v)

So if f(x) ∈ F [x],
f(x) · v = [f(T )](v).

This gives V a F [x]–module structure.
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• F [x]/(f(x)): If
f(x) = xk + bk−1x

k−1 + · · ·+ b1x + b0 ∈ F [x],

then
{1, x, x2, . . . , xk−1}

is a basis for F [x]/(f(x)) viewed as an F–vector space. Moreover, in this basis, T
(multiplication by x) acts like:

1 7→x

x 7→x2

...

xk−1 7→xk = −b0 − b1x− · · · − bk−1x
k−1.

The corresponding matrix, a k × k matrix called the companion matrix of f(x), and
denoted Cf(x), looks like

Cf(x) ≡


0 0 . . . . . . −b0

1 0 . . . . . . −b1

0 1
. . . . . .

...
...

...
. . . . . .

...
0 0 . . . 1 −bk−1

 .

• Rational Canonical Form: V is finite dimensional over F , but F [x] is infinite dimen-
sional over F , hence V must be a torsion F [x]–module. By the Fundamental Theorem
of Finitely Generated Modules over a PID, we must then have

V ∼= F [x]/(a1(x))⊕ · · · ⊕ F [x]/(am(x))

as F [x]–modules and such that

a1(x) | a2(x) | · · · | am(x).

By the previous item (and since we have a direct sum), we then see that there is a
basis for T with corresponding matrix

Ca1(x)

Ca2(x)

. . .
Cam(x)

 .

This is the Rational Canonical Form of T .
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• Observations and Consequences: By the uniqueness statement of the fundamental
theorem, given a linear transformation T , the rational canonical form of T is unique.
Given a matrix A, we can define Tv = Av, hence we immediately obtain:

– Every matrix is similar to a matrix in rational canonical form.

– 2 matrices are similar if and only if they have the same rational canonical form.

– The rational canonical form is invariant under field extensions.

– Similarity of matrices is invariant under field extensions.

Let A be an n × n matrix over F . By considering the rational canonical form of A,
we also learn something about the minimal and characteristic polynomials of A.

– From the decomposition F [x] ∼= F [x]/(a1(x))⊕ · · · ⊕ F [x]/(am(x)), we see that

mA(x) = am(x).

– A quick calculation shows the characteristic polynomial of a Ca(x) is exactly a(x).
Hence we have (using the fact that similar matrices have the same characteristic
polynomial)

cA(x) = a1(x)a2(x) . . . am(x),

where cA(x) is the characteristic polynomial of A.

– From the previous item the Cayley–Hamilton Theorem is immediate.

– More precisely,
cA(x) | (mA(x))k,

for some positive integer k. In particular, cA(x) and mA(x) have the same roots.

• Computational Aspects: Let A be a matrix. To find the rational canonical form,
apply elementary row and column operations to xI − A to put it into Smith Normal
Form: 

1
. . .

1
a1(x)

a2(x)
. . .

am(x)


.

The ai(x)′s are then the invariant factors.
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• The Algebraically Closed Case: Now suppose the field F is algebraically closed. Then
the invariant factors a1(x), . . . , am(x) factor completely into linear terms (equivalently,
F contains all eigenvalues of T ). In F [x]/(x− λ)k, the elements

{1, x− λ, (x− λ)2, . . . , (x− λ)k−1}

form a basis. In this basis, T acts like (write x = λ + (x− λ)):

1 7→λ · 1 + (x− λ)

(x− λ) 7→λ(x− λ) + (x− λ)2

...

(x− λ)k−1 7→λ(x− λ)k−1 + (x− λ)k = λ(x− λ)k−1.

The corresponding matrix, a k × k matrix called a Jordan Block, looks like
λ
1 λ

1
. . .
. . . . . .

1 λ

 .

• Jordan Canonical Form: By the Fundamental Theorem of Finitely Generated Modules
over PID II, we then have that

V ∼= F [x]/(x− λ1)k1 ⊕ · · · ⊕ F [x]/(x− λt)kt ,

where λi’s are the eigenvalues of T . By the previous item, we then see that there is a
basis for T with corresponding matrix

J1

J2

. . .
Jt

 ,

where each Ji is a ki × ki Jordan block. This is the Jordan Canonical Form of T .

• Observations and Consequences: Up to permutation of the Jordan blocks, the Jordan
Canonical Form is unique.

– Every matrix is similar to a matrix in Jordan Canonical Form.
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– 2 matrices over a field F are similar if and only if they have the same Jordan
Canonical Form over the algebraic closure of F .

– If a matrix A is similar to a diagonal matrix D, then D is the Jordan Canonical
Form of A.

– The Jordan Canonica Form is NOT invariant under field extensions.

By considering the Jordan Canonical Form, we also have a criterion for diagonaliz-
ability: A matrix A is diagonalizable if and only if mA(x) has no repeated roots.

– A quick calculation shows that the minimal polynomial of a diagonal matrix has
as roots exactly the distinct elements along the diagonal (no repeats).

– Conversely, the minimal polynomial of a Jordan block of size k with eigenvalue
λ has minimal polynomial (x− λ)k (think F [x]/(x− λ)k). The minimal polyno-
mial of a Jordan Canonical Form is the least common multiple of the minimal
polynomials of the Jordan blocks (use Smith Normal Form). The result follows.
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