Here are collected some additional facts that come up in the solutions of some of the other qual problems. The references to the problems are given in the format [X, ####, Y, #] ([season, year, section, number]), where $X \in \{W, S, F\}$ (corresponding to winter, spring, fall) and $Y \in \{G, R, F, L\}$ (corresponding to groups, rings, fields, linear algebra).

1 Groups

- [S, 2000, G, 2] Two elements of S_n are conjugate in S_n if and only if they have the same cycle type (write as disjoint cycles, the meaning of cycle type should be obvious. Then notice that if $(a_1a_2...a_k)$ is a cycle, then $\tau(a_1a_2...a_k)\tau^{-1} = (\tau(a_1)\tau(a_2)...\tau(a_3))$.). So the number of conjugacy classes equals the number of partitions of n.
- [S, 2000, G, 2] Let $m \le n$ be positive integers. The number of m cycles in S_n is

$$\frac{\binom{n}{m}m!}{m} = \binom{n}{m}(m-1)! = \frac{n(n-1)(n-1)\dots(n-m+1)}{m}$$

• [F, 2004, G, 1] Let G be a group and Z(G) be the center of G.

G/Z(G) cyclic $\Longrightarrow G$ abelian.

2 Rings

• [F, 2004, R, 2] Euclid's Lemma: Let all unknowns be integers.

 $n \mid ab \text{ and } gcd(n, a) = 1 \Longrightarrow n \mid b.$

If p is a prime, this says

$$p \mid ab \Longrightarrow p \mid a \text{ or } p \mid b.$$

3 Fields

• [F, 2004, F, 2] Composite Extension: Let K/F be Galois and L/F is any extension. Then KL/L is Galois and

$$\operatorname{Gal}(KL/L) \cong \operatorname{Gal}(K/(K \cap L)).$$

(Consider the map $\phi : \operatorname{Gal}(KL/L) \to \operatorname{Gal}(K/F) : \sigma \mapsto \sigma|_K$ and show ϕ is 1-1 and its image is $\operatorname{Gal}(K/(K \cap L))$: i.e. prove the fixed field of the image of ϕ is exactly $K \cap L$).

• [F, 2004, F, 3] Primitive Element Theorem: Let K/F be a finite extension. Then $K = f(\theta)$ if and only if there exists only finitely many subfields of K containing F. In particular if K/F is finite and separable, then K/F is simple. (For the first statement, let E be an intermediate field and consider the minimal polynomial for θ over E, g(x), and show E is generated over F by the coefficients of g. Conversely, divide into case of F finite or infinite. The finite case is immediate, the infinite case follows by considering subfields of the form $F(\alpha + c\beta)$ and showing that $F(\alpha, \beta) = F(\alpha + c\beta)$ for some $c \in F$. For the last statement, take the Galois closure of K over F.)

4 Linear Algebra

- [S, 2004, L, 2] Similar polynomials have the same trace and determinant. So the trace and determinant is equal to the sum and product of the eigenvalues, respectively.
- [F, 2004, L, 1] Let $A \in GL_n(\mathbb{C})$. Then A is similar to A^t (use Jordan Canonical Form and reverse order of basis).
- [F, 2004, L, 1] Let $A, B \in Gl_n(\mathbb{C})$. Then

$$(AB)^t = B^t A^t.$$

(To see this, let $A: V \to W, B: W \to Z$ be linear transformations. Define $T: Z^* \to W^*: g \mapsto Tg: Tg(\alpha) = g(B(\alpha))$ and similarly define $S: W^* \to V^*$ (here V^* denotes the dual space of V, i.e. the space of linear functions from V into the base field \mathbf{C}). Explicit computation then shows that the matrix representation for T and S are A^t and B^t , repectively, from which the formula follows.) In particular, from this we see that the inverse operation and the transpose operation commute, i.e.

$$(P^{-1})^t = (P^t)^{-1}.$$

• [F, 2004, L, 3] Let A be a symmetric matrix with real entries. Then A is diagonalizable.