
1 Spring 2002 – Ring Theory

Problem 1.1. Let R be a ring and A and B two non–isomorphic simple, left R–modules
(a left–module is simple if it has no proper submodules, i.e., submodules other than {0}
and itself). Show that the only proper submodules of M = A⊕B are {(α, 0) : α ∈ A} and
{(0, β) : β ∈ B}.

Solution: This follows directly from the definitions and the projection maps. Suppose
N ⊂M is a proper submodules. Define

πA : N −→ A : (α, β) 7→ α.

πA is easily checked to be a homomorphism (since operations are componentwise). We claim
that πA(N) ⊂ A is a submodule: suppose a ∈ πA(N), then (∃(a, β) ∈ N)(πA((a, β) = a).
Since N is a submodule, we have

−(a, β) = (−a,−β) ∈ N ⇒ πA(−a,−β) = −a⇒ −a ∈ πA(N).

One can similarly show that ra ∈ πA(N),∀r ∈ R. Finally if a, b ∈ πA(N), then

[∃(a, β), (a′, γ) ∈ N ][πA((a, β) = a, πA((a′, γ) = a′],

so then πA((a, β) + (a′, γ)) = πA((a + b, α + γ)) = a + b, so a + b ∈ πA(N).
Similarly we can define πB to project onto B and show that πB(N) ⊂ B is a submodule.

By assumption it must be the case that πA(N) = {0}, A and πB(N) = {0}, B so that the
only proper submodules of πA(N) ⊕ πB(N) are {(α, 0) : α ∈ A} and {(0, β) : β ∈ B}.
We are done since N ⊂ πA(N) ⊕ πB(N) (if (a, b) ∈ N , then πA((a, b)) = a ∈ πA(N) and
πB((a, b)) = b ∈ πB(N), so (a, b) ∈ πA(N) ⊕ πB(N)) so any submodule of N is also a
submodule of πA(N)⊕ πB(N).

• Ring: A ring R is a set with two binary operations: + and ×, such that

– (R,+) is an abelian group.

– × is associative.

– The distributive law holds.

A ring is commutative if multiplication is commutative. A ring has an identity if
∃1 ∈ R such that 1× r = r× 1 = r, ∀r ∈ R. An example of a ring which is not a field
is the integers Z under the usual operations.

• Module: Let R be a ring. A (left) R–module is a set M together with
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– A binary operation + such that (M,+) is an abelian group.

– A map R×M →M : (r, m) 7→ rm such that

∗ (r + s)m = rm + sm

∗ (rs)m = r(sm)
∗ r(m + n) = rm + rn

∗ 1m = m,∀m ∈M , if R has an identity.

N ⊂M is a submodule if it is a subgroup under addition and such that

(∀r ∈ R,n ∈ N)(rn ∈ N).

If R is a field, then a module over R is also called a vector space. Abelian groups are
all Z–modules.

• Direct Sum (of modules): Let R be a ring. Let A, B be R–modules.

– The (external) direct sum of A and B is the set

A×B = {(a, b) | a ∈ A, b ∈ B},

with componenetwise addition and multiplication by elements of R.

– Let A, B be submodules of an R module M . The following are equivalent:
(1) π : A×B −→ A + B : (a, b) 7→ a + b is an isomorphism.
(2) A ∩B = 0.
(3) Each m ∈ A + B can be written uniquely as a + b, with a ∈ A, b ∈ B.
If any of these three conditions are satisfied, then M = A + B is the (internal)
direct sum of A and B, written

(A + B =)M = A⊕B.

Note that π is an isomorphism between A×B and A⊕B(= A + B).

• Projection: Let R be a ring. Let M = A1 × A2 where A1 and A2 are R–modules.
Then the maps

πi : M −→ Ai : (a1, a2) 7→ ai

is a surjective homomorphism with

ker(πi) = {(a1, a2) | ai = 1, aj ∈ Aj} ∼= Aj (j 6= i).
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Problem 1.2. Let R be a commutative local ring, that is, R has a unique maximal ideal
M .

(i) Show that if x lies in M , then 1− x is invertible.
(ii) Show that if R is Noetherian and I is an ideal satisfying I2 = I, then I = 0. Hint:

consider a minimal set of generators for I.

Solution: (i) Suppose 1−x is not invertible. Then consider (1−x), the ideal generated
by 1 − x. (1 − x) is contained in some maximal ideal, but since M is the unique maximal
ideal, (1− x) ⊂M . This implies that in particular 1− x ∈M , but then

1 = (1− x) + x ∈M,

which is a contradiction since then 1 ·R ⊂M ⇒M = R.
(ii) Since R is Noetherian, I is finitely generated (suppose it is not, then consider the

chain
(x1) ⊂ (x1, x2) ⊂ (x1, x2, x3) ⊂ . . . ,

where xi ∈ I and xi /∈ (x1, . . . , xi−1), if possible. (x1, x2, . . . , xn) ⊂ I for all n, so since I is
not finitely generated, this chain does not stabilize (i.e. @k ∈ N such that (x1, x2, . . . , xm) =
(x1, x2, . . . , xk) for all m ≥ k), a contradiction). Let {x1, x2, . . . , xn} be a minimal set of
generators for I. If r ∈ I, then

r =
n∑
1

aixi, ai ∈ R

hence

r2 = (
n∑
1

aixi)2 = x1(a1

n∑
1

aixi) + · · ·+ xn(an

n∑
1

aixi) =
n∑
1

rixi,

where now ri ∈ I. Since I2 = I, there exists some r ∈ I such that r2 = xn. So applying the
above to xn, we get that

xn =
n∑
1

rixi, ri ∈ I.

Therefore we have
(1− ri)xn = r1x1 + · · ·+ rn−1xn−1.

By (i), (1− ri) is invertible, so multiplying both sides by its inverse we get

xn = r′1x1 + · · ·+ r′n−1, r′i ∈ I,

which implies that I = (x1, x2, . . . , xn−1), contradicting the minimality of n.
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• Ideal: Let R be a ring. I ∈ R is a (left) ideal of R if

– I is a subring of R.

– rI ⊂ I,∀r ∈ R.

A trivial consequence of the second item is that if an ideal contains 1, then it must
be equal to the entire ring.

• Generators of Ideals: Let R be a ring with 1 and let A ⊂ R. Then the (left) ideal
generated by A is the set

{r1a1 + r2a2 + . . . rnan | ri ∈ R, ai ∈ A,n ∈ N},

that is the set of all finite sums of elements of the form ra with r ∈ R and a ∈ A.

• Local Ring: A commutative ring with 1 is a local ring if it has a unique maximal
ideal. The following are equivalent.

(1) R is a local ring with unique maximal ideal M .

(2) R \R× is an ideal (R× is the set of invertible elements of R).

(3) There is a maximal ideal M of R such that 1 + m ∈ R×,∀m ∈M .

• Noetherian: A commutative ring R is Noetherian or satisfy the ascending chain con-
dition on ideals (or A.C.C) if whenever

I1 ⊂ I2 ⊂ I3 ⊂ . . .

is an increasing chain of ideals of R, ∃m ∈ N such that Ik = Im,∀k ≥ m. The following
are equivalent.

(1) R is a Noetherian ring.

(2) Every nonempty set of ideals of R contains a maximal element (under inclusion).

(3) Every ideal of R is finitely generated.

We have analogous definitions and results for modules (submodules will be in place
of ideals).

Problem 1.3. Let F2 be the field with 2 elements and let R = F2[x]. List, up to isomor-
phism, all R–modules of order 8.

Solution: First note that R is a P.I.D. since F2 is a field. By the Fundamental Theorem
of Finitely Generated Modules over a P.I.D. I, we know that a finite R–module looks like

R/(a1(x)⊕R/a2(x)⊕ · · · ⊕R/am(x),
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where a1(x) | a2(x) | · · · | am(x). If a(x) has degree n and we view R/(a(x)) as a R–vector
space in the natural way (i.e. r(f) = rf), then we see that

{1, x, x2, . . . , xn−1}

is a basis (linear independence comes from the fact that f(x) = 0 in R/(a(x)) if and only
if f(x) | a(x). These elements span since a(x) = 0 and so xn can be written as a R–linear
combination of the n elements. Higher powers of x can be dealt with by dividing by a(x)).
Therefore (since F2 has 2 elements) we see that R/(a(x)) has 2n elements.

Applying this to our current situation, we see that it must be the case that

deg(a1(x)) + deg(a2(x)) + . . . + deg(am(x)) = 3,

since 23 = 8. There are 8 polynomials of degree 3 over F2, which gives us 8 possibilities:

R/(x3), R/(x3 + x2), R/(x3 + x), R/(x3 + 1),

R/(x3 + x2 + x), R/(x3 + x2 + 1), R/(x3 + x + 1), R/(x3 + x2 + x + 1).

There are 4 polynomials of degree 2 and 2 polynomials of degree 1:

x2, x2 + x, x2 + 1, x2 + x + 1;

x, x + 1.

From these we have that

x | x2, x | x2 + x, (x + 1) | x2 + x.

This gives us 5 more possibilities:

R/(x)⊕R/(x2), R/(x)⊕R/(x + x2);

R/(x)⊕R/(x)⊕R/(x), R/(1 + x)⊕R/(1 + x)⊕R/(1 + x).

This gives us a total of 13 possible R–modules of order 8 over F2. By the uniqueness
statement of the Fundamental Theorem, these are all distinct up to isomorphism.

• Field: A field is a ring F with 1 such that (F \ {0}, ·) is also an abelian group.

• Integral Domain: A commutative ring with identity 1 6= 0 is an integral domain if it
has no zero divisors (i.e. no element r such that there is a non–zero element s with
rs = 0).
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• Principal Ideal Domain (P.I.D.): A principle ideal domain is an integral domain in
which every ideal is principal, i.e. generated by a single element.

• F [x] ⇔ P.I.D.: Let F be a commutative ring. Then F [x] is a P.I.D. if and only if
F is a field. (For the forward direction, prove the Division Algorithm for F [x], i.e. if
a(x), b(x) ∈ F [x], then there exists unique q(x), r(x) ∈ F [x] such that

a(x) = q(x)b(x) + r(x), with r(x) = 0 or deg(r(x)) < deg(b(x)).

For the converse, notice that F [x]/(x) ∼= F , which is a domain since F [x] is, so that
(x) ⊂ F [x] is a prime, hence maximal ideal since F [x] is a P.I.D).

• Fundamental Theorem of Finitely Generated Modules over a P.I.D I: Let R be a P.I.D.
and let M be a finitely generated R–module. Then

M ∼= Rr ⊕R/(a1)⊕R/(a2)⊕ · · · ⊕R/(am)

for some r ∈ N ∪ {0} and a1, a2, . . . , am ∈ R such that

a1 | a2 | · · · | am.

The number r is called the free rank of M and the elements a1, a2, . . . , am ∈ R are
called the invariant factors of M . Two finitely generated R–modules are isomorphic
if and only if they have the same free rank and the same list of invariant factors.

• F [x]/(a(x)) as F–Vector Space: Let F be a field and let a(x) ∈ F [x] be a polynomial
of degree n. Then

{1, x, . . . , xn−1}
is an F–basis for F [x]/(a(x)) viewed as a vector space over F in the natural way.
I.e. if r ∈ F , f(x) = anxn + an−1x

n−1 + a1x + a0 ∈ F [x] and · represents the action
of F on F/(a(x)), then

r · f(x) = r · (anxn + an−1xn−1 + · · ·+ a1x + a0)

= r · (anxn + an−1xn−1 + · · ·+ a1x + a0)

= r · (anxn + an−1x
n−1 + · · ·+ a1x + a0)(= r · f(x))

= ranxn + ran−1x
n−1 + · · ·+ ra1x + ra0

= (rf)(x),

where the second and third equalities come from the fact that if r ∈ F , then

rxm = rxm + (a(x)) = r(xm + (a(x))) = rxm

and
xm = xm + (a(x)) = (x + a(x))m = xm.
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2 Winter 2002 – Rings

Problem 2.1. Let F be a field and A be a commutative F–algebra. Suppose A is of finite
dimension as a vector space of F .

(a) Prove all prime ideals of A are maximal. Hint: consider maps A/P → A/P (P
prime) of the form x 7→ ax with a in A.

(b) Prove that there are only finitely many maximal ideals of A.

Solution: (a) Let B ≡ {x1, x2, . . . , xm} be a basis for A/P (A/P is finite dimensional
since it is clear that {x1, x2, . . . , xn} spans A/P if {x1, x2, . . . , xn} is a basis for A over F ).
Let a ∈ A \ P and consider the map

λa : A/P −→ A/P : x 7→ ax = a x.

P is a prime ideal so R/P is a domain, therefore λa is injective (ax = ay ⇔ a(x− y) = 0⇔
x = y). We claim that aB ≡ {ax1, ax2, . . . , axm} is a basis for A/P : by injectivity all these
elements are non–zero and distinct. Next suppose α1, α2, . . . , αm ∈ F are such that

α1ax1 + α2ax2 + · · ·+ αmaxm = 0.

This implies that αia = 0, 1 ≤ i ≤ m. Since a 6= 0, we must have αi = 0, 1 ≤ i ≤ m. So
we conclude that aB is a linearly independent set over F . By the invariance of dimension
property it must also be the case that this is a spanning set (if it were not, then we can
throw in some x and still have linear independence, but then we would end up with a basis
with more than m elements) and we conclude it is a basis.

From this we conclude that in fact λa is onto (f1ax1 + · · · + fmaxm = λa(f1x1 + · · · +
fmaxm) since A is commutative) and therefore ∃x such that a x = 1. This implies x = (a)−1

since A/P is a domain (dropping the bars, we have ax = 1 so xax − x = (xa − 1)x = 0,
which implies xa− 1 = 0 and hence xa = 1 since x 6= 0). Since this holds for all a ∈ A \ P
(⇔ a 6= 0), we find that A/P is a field and hence P is maximal.

(b) First notice that any ideal of A is also a vector subspace of A. Next we claim A is
Artinian (in fact also Noetherian): Let I ( J be ideals of A. Since they are both subspaces
of A it must be the case that the dimension of J is strictly greater than that of I (let
B ≡ {x1, x2, . . . , xn} be a basis of I, then it must be the case that there is an element in
y ∈ J which does not lie in the F–span of B. Then we see that B∪{y} is part of a basis for
J). Therefore any chain of ideals can have at most dimF (A) + 1 terms and hence is finite.

The result now follows from the fact that an Artinian ring can have only finitely many
maximal ideals: Let C be the set of all ideals that can be written as an intersection of
maximal ideals of A. Since A is Artinian, C has a minimal element M ≡M1∩M2∩· · ·∩Mn.
Let N be a maximal ideal which is not one of M1, . . . ,Mn. By the minimality of M ,
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N ∩M = M and hence M ⊂ N . We claim that this implies Mk ⊂ N for some 1 ≤ k ≤ n:
Let k − 1 be the largest number such that M̃k−1 ( N , where M̃k−1 is the intersection of
all Mj for j ≤ k − 1 (if k − 1 = 0, then M1 ⊂ N). Let x ∈ M̃k−1 \ N . For all y ∈ Mk,
xy ∈ M̃k−1Mk ⊂ M̃k−1 ∩Mk ⊂ N (by the maximality of k− 1), so since N is maximal and
hence prime, this implies y ∈ Mk. This holds for all y ∈ Mk so Mk ⊂ N . Since Mk is a
maximal ideal, Mk = N and therefore M1, . . . ,Mn are all the maximal ideals of A.

• Algebra: An algebra is a set A over a field F such that

– A is a vector space with respect to addition and multiplication by elements of
the field.

– A is a ring with respect to addition and multiplication.

– (λa)b = a(λb) = λ(ab) for any λ ∈ F , a, b ∈ A.

Ideals of the ring A are the same as the ideals of the algebra A. If I ⊂ A is an ideal,
then I is also a subspace of the vector space A over F .

• Basis: Let V be a vector space. {e1, e2, . . . , en} is basis of V if any of the following
equivalent conditions are satisfied:

– Every v ∈ V can be uniquely expressed as a linear combination of e1, e2, . . . , en.

– It is a set of linearly independent vectors that span.

– It is a maximal linearly independent set and a minimal spanning set.

• Invariance of Dimension Property: If V is a finite–dimensional vector space, then any
two bases of V have the same (finite) number of elements.

• Prime Ideal: Let R be a ring. A proper ideal P ⊂ R is a prime ideal if given a, b ∈ R

ab ∈ P =⇒ a ∈ P or b ∈ P.

• P Prime ⇔ R/P a Domain: Let R be a commutative ring. P ⊂ R is a prime ideal if
and only if R/P is an integral domain (i.e. has no zero divisors).

• M Maximal ⇔ R/M a Field: Let R be a commutative ring. M ⊂ R is a maximal
ideal if and only if R/M is a field (use the Correspondence Principle and the fact that
a commutative ring is a field if and only if it has no non–trivial ideals).

• Ideal  Subspace: Let F be a field and R a finitely generated algebra over F . Then
an ideal of R is also a vector subspace of R (viewed over F ).
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• Artinian: Let R be a commutative ring. R is Artinian or satisfy the descending chain
condition (D.C.C.) if whenever

I1 ⊃ I2 ⊃ I3 ⊃ . . .

is a decreasing chain of ideals of R, then there is some m ∈ N such that Ik = Im,∀k ≥
m. Similarly for an R–module, with submodules replacing ideals. The following are
equivalent.

(1) R is an Artinian ring.

(2) Every nonempty set of ideals of R contains a minimal element under inclusion.

– An Artinian ring has only finitely many maximal ideals.

– A finite dimensional algebra over a field is both Noetherian and Artinian.

• A ∩ B ⊂ P ⇒ A ⊂ P or B ⊂ P : Let R be a commutative ring. Let A,B ⊂ R be
ideals and suppose P is a prime ideal such that A ∩B ⊂ P . Then A ⊂ P or B ⊂ P .

Problem 2.2. Let A = Mn(F ) be the ring of n×n matrices with entries in an infinite field
F for n > 1. Prove the following facts:

(a) There are only 2 two–sided ideals of A;
(b) There are infinitely many maximal left ideals of A. Hint: Show that Ax = Ay(x, y ∈

A) if and only if Ker(x) = Ker(y).

Solution: (a) Suppose I is an ideal of A. We claim that the set of entries of matrices
in I form an ideal in F : Let Eij denote the matrix with the ijth entry equal to 1 and the
rest of the entries equal to zero. If α ∈ I, then EijαEij = αijEij , where αij is the ijth entry
of α. By interchanging rows and columns (which correspond to multiplying by appropriate
matrices in A: On the left (for rows) or right (for columns) by the matrix obtained from
the identity matrix by interchanging the appropriate rows or columns), we can transform
αijEij into αijE11. This shows that for each element x that shows up as an entry of a
matrix in I, xE11 ∈ I. Since xE11yE11 = xyE11 and xE11 + yE11 = (x+ y)E11, we see that
the set of entries of matrices of I form an ideal IF ⊂ F .

Now we can set up a natural map

λ : {ideals of A} −→ {ideals of F} : I 7→ IF .

λ is clearly onto since given J ⊂ F an ideal, Mn(J) ⊂Mn(F ) is an ideal. We claim that λ
is also 1-1: Suppose I 6= I ′ ⊂ Mn(F ) are ideals. By the operations described above, given
any x ∈ IF , xEij ∈ I, ∀1 ≤ i, j ≤ n. Adding such xEij ’s together, we may form any element
of Mn(IF ). Conversely it is clear that I ⊂ Mn(IF ) and therefore I = Mn(IF ). Similarly,
I ′ = Mn(I ′F ). We conclude Mn(IF ) 6= Mn(I ′F ) and so IF 6= I ′F .
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λ is therefore a bijection so the only two–sided ideals of A are 0 and A, corresponding
to the only ideals of F , namely 0 and F (if I ⊂ F is a non–zero ideal, then let 0 6= x ∈ I.
Since F is a field, x is invertible, so then x−1 · x = 1 ∈ I which implies that I = F ).

(b)

• Ideals of Mn(R): Let R be a ring with identity. Then every two–sided ideal of Mn(R)
is equal to Mn(J) for some two–sided ideal J ⊂ R.

• Some Matrix Operations: Let R be a ring with identity. Let Eij ∈ Mn(R) be the
matrix with the ijth equal to 1 and all other entries equal to 0. Let I denote the
identity matrix.

– Let A ∈Mn(R). Then EijAEij = aijEij , where aij is the ijth entry of A.
– There are three elementary row and column operations:
∗ Interchanging two rows or columns.
∗ Adding a multiple of one row or column to another.
∗ Multiplying any row or column by an element of R×.

– Applying a row [column] operation α [β] to A corresponds to multiplying A
on the left [right] by the (invertible) matrix obtained from I by applying the
operation to I, i.e. α(A) = α(I) ·A [β(A) = A · β(I)].

• Ideals and Fields: If F is a field, then the only ideals of F are 0 and F .

Problem 2.3. Let F2 be the field with 2 elements and A = F2[T, 1
T ] for an indeterminate

T . Prove the following facts:
(a) The group of units in A is generated by T .
(b) There are infinitely many distinct ring endomorphisms of A.
(c) The ring automorphism group Aut(A) is of order 2.

Solution: (a) First observe that every element of A can be written as f
T m , for some

f ∈ F2[T ],m ∈ N: A generic element looks like

a−mT−m + a−(m−1) · · ·+ a0 + a1T + · · ·+ anTn.

Multiplying and dividing by Tm, we can write this as

a−m + a−(m−1)T + · · ·+ a0T
m + a1T

m+1 + · · ·+ anTm+n

Tm
.

Now suppose f
T m is a unit A. Then f

T m
g

T n = fg
T m+n = 1 for some g

T n ∈ A. So then
fg = Tm+n, which implies that f = T l, l ∈ Z. So each element of A× is some power
(positive or negative) of T and hence T generates A× as an infinite cyclic group.
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(b) Consider the map T 7→ Tn, for some n ∈ Z. This can be extended to some map
φn : A −→ A as follows: For all a, b ∈ F2, m,m′ ∈ Z, let

φn(aTm + bTm′
) = aφn(T )m + bφn(T )m′

= aTnm + bTnm′
,m ∈ Z.

By construction φn is an endomorphism. If n 6= m, then φn 6= φm (e.g. the images of T are
not the same) and hence there are infinitely many endomorphisms since there are infinitely
many integers.

(c) Let φ be an automorphism. Then φ maps a unit to a unit (if x ∈ A is a unit, then
φ(x) · φ(x−1) = φ(x · x−1) = φ(1) = 1, so φ(x)−1 = φ(x−1)). So in particular φ must be
a group automorphism of A× = 〈T 〉 ∼= (Z,+), by part (a) (the isomorphism is given by
T 7→ 1 ∈ Z). We claim the automorphism group of Z has only 2 elements, given by 1 7→ 1
and 1 7→ −1: Suppose φ ∈ Aut(Z) and φ(1) = n ∈ Z. Then

(n− 1)φ−1(1) = φ−1(n− 1) = φ−1(n)− φ−1(1) = 1− φ−1(1),

so 1 = nφ−1(1), which implies n = ±1 since φ−1(1) is an integer. So we conclude the only
automorphisms of 〈T 〉 are given by T 7→ T and T 7→ 1

T and these clearly extend to be
automorphisms of A.

• Aut(Z): The automorphism group of (Z,+) has exactly two elements, given by 1 7→ 1
and 1 7→ −1.

3 Fall 2002 – Ring Theory

Problem 3.1. Let R be a commutative ring with 1, and let S = R[x] be the polynomial
ring in one variable. Suppose M is a maximal ideal of S. Prove that M cannot consist
entirely of 0–divisors. Hint: You may want to distinguish the cases x ∈M and x /∈M .

Solution: First suppose x ∈M . Suppose f ·x = 0 for some f = anxn+· · ·+a1x+a0 ∈ S.
Then ai = 0,∀1 ≤ i ≤ n so f = 0 and we conclude x cannot be a 0–divisor. Now suppose
x /∈ M . M is maximal so S/M is a field. Therefore there exists some f such that xf = 1.
Hence xf + M = 1 + M and so xf − 1 ≡ g ∈ M . Suppose towards a contradiction that g
were a 0–divisor. Then there exists some 0 6= h ∈ S such that xfh− h = gh = 0. But then
xfh = h, so that h = 0 since deg(xfh) ≥ deg(h) + 1, a contradiction.

Problem 3.2. Let R be a commutative ring with 1, and suppose I and J are ideals of R
so that: I + J = R. Show that:

(i) IJ = I ∩ J .
(ii) R/IJ ∼= R/I ⊕R/J .
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Solution: (i) First it is clear that IJ ⊂ I ∩ J (since ideals are closed under multiplica-
tion). Conversely suppose a ∈ I ∩ J . Since I + J = R, there exists x ∈ I, y ∈ J such that
x + y = 1. Therefore a = a(x + y) = ax + ay = xa + ay ∈ IJ , since R is commutative.

(ii) Let
φ : R −→ R/I ⊕R/J : r 7→ (r + I, r + J).

Then φ is surjective homomorphism: That φ is a homomorphism is clear. To see that φ is
surjective, note that since I + J = R, ∃x ∈ I, y ∈ J such that x + y = 1. Then

(0 + I, x + J) + (y + I, 0 + J) = φ(x) + φ(y) = φ(x + y) = φ(1) = (1 + I, 1 + J).

So it must be the case that φ(x) = (0 + I, 1 + J) and φ(y) = (1 + I, 0 + J). Now if
(r + I, s + J) ∈ R/I ⊕R/J is arbitrary, then

φ(xs+yr) = φ(x)φ(s)+φ(y)φ(r) = (0+I, 1+J)(s+I, s+J)+(1+I, 0+J)(r+I, r+J) = (r+I, s+J).

So we see that φ is surjective. Next,

ker(φ) = {r ∈ R | r ∈ I, r ∈ J} = I ∩ J.

So by the First Isomorphism Theorem,

R/(I ∩ J) ∼= R/I ⊕R/J.

By (i), I ∩ J = IJ , so R/IJ ∼= R/I ⊕R/J .

• Product of Ideals: Suppose I and J are ideals of a commutative ring R. Then IJ is
the ideal consisting of all finite sums of elements of the form xy, x ∈ I, y ∈ J .

• Chinese Remainder Theorem: Let A1, A2 be ideals of a commutative ring (with 1) R.
If A1 and A2 are comaximal (i.e. A1 + A2 = R), then A1 ∩A2 = A1A2 and

R/(A1A2) = R/(A1 ∩A2) ∼= R/A1 ×R/A2.

– This generalizes to the case of more ideals A1, A2, . . . , Ak under the condition
that for all i 6= j, Ai and Aj are comaximal.

– An application of this gives us the following: Let n be a positive integer with
factorization pα1

1 pα2
2 . . . pαk

k . Then

Z/nZ ∼= (Z/pα1
1 Z)× (Z/pα2

2 Z)× · · · × (Z/pαk
k Z)

as rings so that in particular

(Z/nZ)× ∼= (Z/pα1
1 Z)× × (Z/pα2

2 Z)× × · · · × (Z/pαk
k Z)×.

12



– From the last equation we learn that φ is multiplicative, where φ is the Euler–φ
function (counts the number of integers less than n that are relatively prime
to n). Clearly φ(pα) = pα−1(p − 1) for p prime. Using these two facts we can
determine the value of φ for any (positive) integer.

Problem 3.3. Let R be a commutative ring with 1, and let S = R[x] be the polynomial
ring in one variable. Let f ∈ S. If f is a unit of S (that is, f is invertible in S), show that
f has the form f = u + g where u is a unit in R and g ∈ S is a nilpotent element without
constant term.

Solution: Let P ⊂ R be a prime ideal. Reduce all coefficients of f modulo P . Since
f ∈ (R[x])×, f ∈ (R[x])× (∃g ∈ S such that gf = 1, reducing modulo P , we get that
g f = 1). Say f = anxn + an−1x

n−1 + · · ·+ a0, then it must be the case that

ai ∈ P, 1 ≤ i ≤ n and a0 ∈ R
×

since R is a domain so the units of R[x] are exactly the units of R. Since P was arbitrary,
we conclude that ai ∈

⋂
P prime P, 1 ≤ i ≤ n and a0 /∈ P for any prime ideal P . This

immediately implies that a0 ∈ R× since a0 is not in any maximal ideal (maximal ideals are
prime) hence not in any proper ideal of R (if a0 /∈ R×, then a0 ∈ (a0) ( R).

Next we claim that
⋂

P prime P = nil(R), where

nil(R) = {x ∈ R | xn = 0, some n ∈ N}

is the set of nilpotent elements of R. First suppose x ∈ R, then ∃n ∈ N such that xn = 0 ∈ P
for any prime P . Since P is prime, xk ∈ P for some k < n. Supoose k is minimal such that
xk ∈ P . If k > 1, then x · xk−1 ∈ P , but then either x ∈ P or k − 1 ∈ P , contradicting the
minimality of k, so k = 1 and x ∈ P . Conversely, suppose x /∈ nil(R). Let F be the family
of all proper ideals not containing any power of x. F 6= ∅ since 0 ∈ F . Chains in F have
upper bounds (if xk ∈ Ij for any Ij in the chain I1 ⊂ I2 ⊂ . . . then xk is also not contained
in the union of them), so by Zorn’s lemma there is a maximal element P . P must be prime,
since if xy ∈ P and x, y /∈ P , then xn ∈ (x) + P , xm ∈ (y) + P for some m,n ∈ N by the
maximality of P . But then xm+n ∈ (xy) + P = P , a contradiction. So x /∈ P .

Finally, g ≡ anxn+an−1x
n−1+· · ·+a1x is nilpotent in S: Let αi be such that aαi

i = 0. Let
N be the maximum of αi, 1 ≤ i ≤ n. Then gNn = (anxn+an−1x

n−1+· · ·+a1x)Nn = 0 (each
term in the expansion must have some coefficient aαn

n . . . aα1
1 such that αn + · · ·+ α1 = Nn,

which implies that there is some αi such that αi ≥ N) and hence g is nilpotent.

• Polynomial Ring of Domains: Let R be an integral domain and p(x), q(x) ∈ R[x].
Then we have

13



(1) deg(p(x)q(x)) = deg(p(x)) + deg(q(x)).

(2) (R[x])× = R×.

(3) R[x] is an integral domain.

• Nilradical: Let R be a commutative ring. Then the nilradical of R is exactly the
intersection of all prime ideals in R.

• Zorn’s Lemma: If A is a nonempty partially ordered set in which every chain has an
upper bound then A has a maximal element.

• Krull’s Theorem: Let R be a ring. Let A ⊂ R be an ideal and S ⊂ R a multiplicative
set (a multiplicative set is a set such that if x, y ∈ S then xy ∈ S, e.g. the R \P for a
prime ideal P is a multiplicative set). Suppose A ∩ S = ∅. Then there exists a prime
ideal P maximal with respect to A ⊂ P and S ∩ P = ∅.

4 Winter 2003 – Rings

Problem 4.1. Give an example of two integral domains A and B which contain a field F
such that A⊗F B is not an integral domain. Justify your answer. Hint: Take A to be the
field of rational functions Fp(X) for the field Fp with p elements.

Solution: Consider the tensor product C⊗R C viewed as an R–algebra. Notice that

(i⊗ i)(i⊗ i) = i2 ⊗ i2 = (−1)⊗ (−1) = (−1)1⊗ (−1) = 1.

So that [(i⊗ i)− (1⊗ 1)][(i⊗ i) + (1⊗ 1)] = 0, with neither of the factors equal to zero. So
C⊗R C is not an integral domain.

• Tensor Product: Let R be a commutative ring. Let M,N be modules over R. The
tensor product of M and N over R, denoted M ⊗R N , is the quotient of the free
Z–module on the set M ×N by the subgroup generated by

(m1 +m2, n)−(m1, n)−(m2, n), (m,n1 +n2)−(m,n1)−(m,n2), (mr, n)−(m, rn).

We have the relations

(m1 + m2)⊗ n = m1 ⊗ n + m2 ⊗ n,

m⊗ (n1 + n2) = m⊗ n1 + m⊗ n2,

mr ⊗ n = m⊗ rn.
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– Notice that 0⊗ n = m⊗ n = 0 for any m ∈M,n ∈ N .

– M ⊗R N is a left R–module such that if r ∈ R, then

r(m⊗ n) = (rm)⊗ n = m⊗ (rn).

– Universal Property of Tensor Products: If L is any left R–module, then there is
a bijection {

R–bilinear maps
φ : M ×N → L

}
←→

{
R–module homomorphisms

Φ : M ⊗R N → L

}

given by
π ◦ Φ = φ,

where
π : M ×N →M ⊗R N : (m,n) 7→ m⊗ n

is a bilinear map. This basically follows from the Universal Property of Free
Modules: If A is a set and F (A) is the free R–module on the set A (i.e. all
elements of the form r1a1 + r2a2 + · · · + rnan, for ri ∈ R, n ∈ N such that each
element of F (A) has a unique expression of this form), then any map from A
into a group G can be uniquely extended to a R–module homomorphism from
F (A) to G.

– If A and B are R–algebras, then

(a⊗ b)(a′ ⊗ b′) = aa′ ⊗ bb′

is well–defined and makes A⊗R B into an R–algebra.

– Notice that R ⊗R R ∼= R and (M ⊕M ′) ⊗R N ∼= (M ⊗R N) ⊕ (M ′ ⊗R N) and
M ⊗R (N ⊕ N ′) ∼= (M ⊗R N) ⊕ (M ⊗ N ′), so that if M,N are free with bases
m1, . . . ,ms and n1, . . . nt then M ⊗R N is free of rank st, with basis mi⊗nj , 1 ≤
i ≤ s, 1 ≤ j ≤ t, i.e.

Rs ⊗R Rt ∼= Rst.

Problem 4.2. Let Fq be the finite field of q elements, and put F = Fq and K = Fq2 . Write
σ : K → K for the field automorphism given by xσ = xq. Let

B =
{(

a b
dbσ aσ

)
a, b ∈ K

}
for a given d ∈ F×. Prove the following three facts:
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(a) B is a subalgebra of dimension 4 over F inside the F–algebra of 2× 2 matrices over
K.

(b) B is a division algebra if and only if there exists no c ∈ K such that d = ccσ.
(c) B cannot be a division algebra.

Solution: (a) Let {1, α} be a basis for K over F . Then

B ≡
{(

1 0
0 1

)
= Ia,

(
α 0
0 ασ

)
= Aa,

(
0 1
d 0

)
= Ib,

(
0 α

dασ 0

)
= Ab

}
is a basis for B over F . Let char(K) = p and q = pn, some n. To see that B spans, suppose
a = x + yα, b = w + zα, x, y, z, w ∈ F , then

xIa+yAa+wIb+zAb =
(

x + yα 0
0 x + yασ

)
+

(
0 w + zα

wd + zdασ 0

)
=

(
a b

dbσ aσ

)
,

where the last equality comes from the fact that since char(K) = p and γq = γ,∀γ ∈ F ,

(x + yα)q = (x + yα)pn
= xq + yqαq = x + yαq

(p |
(
pn

k

)
, 1 ≤ k < pn) and similarly d(w + zα)q = d(w + zαq).

For linear independence first note that Ia and Aa are linearly independent over F since
1 and α are. Ib and Ab are both linearly independent from both Ia and Aa because of the
position of 0’s. Finally, Ib and Ab are linearly independent from each other again because
1 and α are linearly independent.

(b) First suppose there is some c ∈ K such that d = ccσ = cq+1, then set b = 1 and
a = c and we get

A ≡
(

c 1
cq+1 cq

)
∈ B.

Clearly A 6= 0 but det(A) = 0 so A cannot be invertible and hence B is not a division
algebra. Conversely suppose B is not a division algebra. Then ∃a, b ∈ K, not both equal to

zero, such that A ≡
(

a b
dbq aq

)
is not invertible. This implies det(A) = aq+1− dbq+1 = 0.

If either a or b is equal to zero, then that forces the other to be 0 (since K has no zero
divisors) and then A ≡ 0 so suppose a, b 6= 0. Then the equation says aq+1 = dbq+1, which
implies d = (ab−1)q+1 = ab−1(ab−1)σ.

(c) By (b) it suffices to show that there is some c ∈ K such that ccσ = cq+1 = d.
Consider the polynomial f ≡ xq+1 − d over F . We claim that f has some root c ∈ K (of
course then d = ccσ): d ∈ F× so dq−1 = 1, so we have

xq+1 − d | (xq+1)q−1 − dq−1 = xq2−1 − 1 | xq2 − x = xp2n − x.
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From this we conclude that there is a root of f in K since |K| = q2 = p2n and hence K is
the splitting field of xp2n − x.

Problem 4.3. Let A be a discrete valuation ring with maximal ideal M , and define

B = {(a, b) ∈ A×A | a ≡ b mod M}.

Prove the following facts:
(a) B has only one maximal ideal;
(b) B has exactly two non–maximal prime ideals.
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