1 Spring 2002 — Ring Theory

Problem 1.1. Let R be a ring and A and B two non—isomorphic simple, left R—modules
(a left—-module is simple if it has no proper submodules, i.e., submodules other than {0}
and itself). Show that the only proper submodules of M = A @ B are {(«,0) : « € A} and

{(0,8): B € B}.

Solution: This follows directly from the definitions and the projection maps. Suppose
N C M is a proper submodules. Define

AN — A:(a,f) — a.

74 is easily checked to be a homomorphism (since operations are componentwise). We claim
that m4(N) C A is a submodule: suppose a € m4(N), then (3(a, ) € N)(wa((a,B) = a).
Since N is a submodule, we have

—(a,B) = (—a,—B) € N = wa(—a,—3) = —a = —a € m4(N).
One can similarly show that ra € m4(N),Vr € R. Finally if a,b € m4(N), then
[El(a’a 6)7 (a’lvfy) € N] [WA((avﬁ) = a’ﬂA((ala/}/) = CLIL

so then m4((a, 8) + (a’,7)) = ma((a+b,a+ 7)) =a+b,s0 a+ b € wa(N).

Similarly we can define wp to project onto B and show that 7p(N) C B is a submodule.
By assumption it must be the case that m4(N) = {0}, A and 7g(N) = {0}, B so that the
only proper submodules of m4(N) & wp(N) are {(a,0) : a € A} and {(0,5) : B € B}.
We are done since N C w4(N) & wp(N) (if (a,b) € N, then m4((a,b)) = a € ma(N) and
m5((a,b)) = b € mp(N), so (a,b) € ma(N) @& wp(NN)) so any submodule of N is also a
submodule of T4 (N) @ wg(N). O

e Ring: A ring R is a set with two binary operations: + and x, such that

— (R, +) is an abelian group.
— X is associative.
— The distributive law holds.
A ring is commutative if multiplication is commutative. A ring has an identity if

d1 € Rsuch that 1 xr =r x 1 =7r,Vr € R. An example of a ring which is not a field
is the integers Z under the usual operations.

e Module: Let R be a ring. A (left) R—module is a set M together with



— A binary operation + such that (M, +) is an abelian group.
— A map Rx M — M : (r,m) — rm such that

* (r+s)m=1rm+sm

* (rs)m =r(sm)

x r(m+n)=rm+rn

* 1lm =m,Vm € M, if R has an identity.

N C M is a submodule if it is a subgroup under addition and such that
(Vr€e R,ne N)(rn € N).

If R is a field, then a module over R is also called a vector space. Abelian groups are
all Z-modules.

e Direct Sum (of modules): Let R be a ring. Let A, B be R—modules.

— The (external) direct sum of A and B is the set
Ax B={(a,b)|ac Abe B},

with componenetwise addition and multiplication by elements of R.
— Let A, B be submodules of an R module M. The following are equivalent:
(1) m: Ax B— A+ B:(a,b) — a+ bis an isomorphism.
(2) AnB=0.
(3) Each m € A+ B can be written uniquely as a + b, with a € A,b € B.

If any of these three conditions are satisfied, then M = A + B is the (internal)
direct sum of A and B, written

(A+ B=)M = A& B.

Note that 7 is an isomorphism between A x B and A& B(= A+ B).

e Projection: Let R be a ring. Let M = A; x Ay where A; and A are R—modules.
Then the maps
mi M — A;:(a1,a2) — a;

is a surjective homomorphism with

ker(m) = {(a1,a2) | @i = Loa; € Aj} 2 4;  (j #19).



Problem 1.2. Let R be a commutative local ring, that is, R has a unique maximal ideal
M.

(i) Show that if x lies in M, then 1 — x is invertible.

(ii) Show that if R is Noetherian and I is an ideal satisfying I? = I, then I = 0. Hint:
consider a minimal set of generators for 1.

Solution: (i) Suppose 1—z is not invertible. Then consider (1—=x), the ideal generated
by 1 —z. (1 — z) is contained in some maximal ideal, but since M is the unique maximal
ideal, (1 — ) € M. This implies that in particular 1 —z € M, but then

l=(1-2z)4+2¢€ M,

which is a contradiction since then 1- R C M = M = R.

(ii) Since R is Noetherian, I is finitely generated (suppose it is not, then consider the
chain
(z1) C (z1,22) C (21,22,23) C ...,

where z; € I and x; ¢ (x1,...,xi_1), if possible. (x1,z2,...,x,) C I for all n, so since I is
not finitely generated, this chain does not stabilize (i.e. Ak € N such that (z1,22,...,Tm) =
(x1,x2,...,21) for all m > k), a contradiction). Let {z1,x2,...,2,} be a minimal set of
generators for I. If » € I, then

n
r= E a;x;, a; € R
1

hence
n n

n n
r? = (Z a;iz;)? = z1(ay Z a;x;) + -+ wplan Z a;x;) = Z T,
1 1 1

1

where now 7; € I. Since I? = I, there exists some 7 € I such that 2 = x,,. So applying the
above to x,, we get that

n
wn:E rix;, 1 € 1.
1

Therefore we have
(I —r)xy =121+ 4+ rp_1Tp_1.

By (i), (1 — ;) is invertible, so multiplying both sides by its inverse we get
Tp=riT1 41, 1Tie,

which implies that I = (z1,z9,...,2,-1), contradicting the minimality of n. O



e Ideal: Let R be aring. I € R is a (left) ideal of R if

— [ is a subring of R.
—rl CI,VreR.

A trivial consequence of the second item is that if an ideal contains 1, then it must
be equal to the entire ring.

e Generators of Ideals: Let R be a ring with 1 and let A C R. Then the (left) ideal
generated by A is the set

{ria1 +rqas +...rpa, | 7 € R,a; € A,n € N},
that is the set of all finite sums of elements of the form ra with r € R and a € A.
e Local Ring: A commutative ring with 1 is a local ring if it has a unique maximal
ideal. The following are equivalent.
(1) R is a local ring with unique maximal ideal M.
(2) R\ R* is an ideal (R* is the set of invertible elements of R).
(3) There is a maximal ideal M of R such that 1 +m € R*,Vm € M.

e Noetherian: A commutative ring R is Noetherian or satisfy the ascending chain con-
dition on ideals (or A.C.C) if whenever

LCcLcCclsC...
is an increasing chain of ideals of R, 3m € N such that I, = I,,,Vk > m. The following
are equivalent.
(1) R is a Noetherian ring.
(2) Every nonempty set of ideals of R contains a maximal element (under inclusion).
(3) Every ideal of R is finitely generated.

We have analogous definitions and results for modules (submodules will be in place
of ideals).

Problem 1.3. Let Fa be the field with 2 elements and let R = Fa[z]. List, up to isomor-
phism, all R—modules of order 8.

Solution: First note that R is a P.I.D. since Fy is a field. By the Fundamental Theorem
of Finitely Generated Modules over a P.I.D. I, we know that a finite R—module looks like

R/(a1(z) © R/ag(x) @ --- @ R/am(z),



where ay(z) | ag(x) | -+ | am(x). If a(x) has degree n and we view I2/(a(x)) as a R-vector
space in the natural way (i.e. 7(f) = rf), then we see that

{1,7z,22,..., 2" 1}

is a basis (linear independence comes from the fact that f(z) =0 in R/(a(z)) if and only

if f(x) | a(x). These elements span since a(z) = 0 and so Z" can be written as a R-linear
combination of the n elements. Higher powers of x can be dealt with by dividing by a(x)).
Therefore (since g has 2 elements) we see that R/(a(z)) has 2" elements.

Applying this to our current situation, we see that it must be the case that
deg(ai(z)) + deg(az(z)) + ...+ deg(am(x)) = 3,
since 23 = 8. There are 8 polynomials of degree 3 over Fy, which gives us 8 possibilities:
R/(«%), R/(2® +2%), R/(«® + x), R/ («° + 1),
R/(x* 4+ 2+ 2),R/(z3 + 2>+ 1),R/(2® +x + 1), R/(a> + 2> + z + 1).
There are 4 polynomials of degree 2 and 2 polynomials of degree 1:
x2,:c2 +x,x2 + 1,332 +z4+1;
rz,x+ 1.

From these we have that
vt |z (x+1) |2+
This gives us 5 more possibilities:
R/(z) ® R/(2%), R/(x) ® R/(x + 2%);

R/(x)® R/(z)® R/(x),R/(1+x2)®R/(1+z)®d R/(1+ x).
This gives us a total of 13 possible R—modules of order 8 over Fs. By the uniqueness

statement of the Fundamental Theorem, these are all distinct up to isomorphism. O

e Field: A field is a ring F' with 1 such that (F'\ {0}, ) is also an abelian group.

e Integral Domain: A commutative ring with identity 1 # 0 is an integral domain if it
has no zero divisors (i.e. no element r such that there is a non—zero element s with
rs = 0).



e Principal Ideal Domain (P.I.D.): A principle ideal domain is an integral domain in
which every ideal is principal, i.e. generated by a single element.

o F[z] & P.ID.: Let F be a commutative ring. Then F[z] is a P..D. if and only if
F is a field. (For the forward direction, prove the Division Algorithm for F[x], i.e. if
a(x),b(x) € F[z], then there exists unique g(z),r(z) € F[z] such that

a(x) = q(x)b(x) + r(x), with r(x) =0 or deg(r(z)) < deg(b(x)).

For the converse, notice that F|z]/(z) = F, which is a domain since F[z] is, so that
(x) C F|x] is a prime, hence maximal ideal since F[x] is a P.I.D).

e Fundamental Theorem of Finitely Generated Modules over a P.I.D I: Let R be a P.1.D.
and let M be a finitely generated R—module. Then

M%RT@R/(al)@R/(ag)@---EBR/(am)
for some r € NU {0} and ay,ag,...,a, € R such that
ap |az |-+ | am.

The number 7 is called the free rank of M and the elements aq,as2,...,a,, € R are
called the invariant factors of M. Two finitely generated R—modules are isomorphic
if and only if they have the same free rank and the same list of invariant factors.

e F[x]/(a(x)) as F—Vector Space: Let F' be a field and let a(z) € F[z] be a polynomial
of degree n. Then
{1,z,...,a" 1}
is an F-basis for Fz]/(a(x)) viewed as a vector space over F' in the natural way.

Le.if r € F, f() = apa™ + an—12" ' + a17 + ap € F[z] and - represents the action
of F on F/(a(x)), then

- f(z)

T (apa™ + ap_12" 1 4+ -+ a1z + ag)

7 (anT™ + ap_12" 1 + -+ a1T + ag)

=7 (anT" + an 1T 4+ T+ ag)(=7- f(T))
= ranT" + 1Ay 1T+ 4 T T + rag

= (rf)(@),

where the second and third equalities come from the fact that if r € F', then

ra™ =rz™ + (a(z)) = r(z™ + (a(x))) = ra™

and

2™ =z + (a(z)) = (x + a(x))™ =7™.



2 Winter 2002 — Rings

Problem 2.1. Let F be a field and A be a commutative F—algebra. Suppose A is of finite
dimension as a vector space of F'.

(a) Prove all prime ideals of A are maximal. Hint: consider maps A/P — A/P (P
prime) of the form z — ax with a in A.

(b) Prove that there are only finitely many maximal ideals of A.

Solution: (a) Let B = {Z1,732,...,Tm} be a basis for A/P (A/P is finite dimensional
since it is clear that {Z1,T3,...,T,} spans A/P if {1,x9,...,2z,} is a basis for A over F').
Let a € A\ P and consider the map

A A/P — A/P:ZT+— aT =a7Z.

P is a prime ideal so R/P is a domain, therefore )\, is injective (a7 = ay < a(T—y) =0 <
T =7). We claim that aB = {a71, a3, . ..,aT,} is a basis for A/P: by injectivity all these
elements are non—zero and distinct. Next suppose a1, as,...,a,, € F are such that

ai1axT] + aeaxs + - - - + apax,, = 0.

This implies that a;a = 0,1 < ¢ < m. Since a # 0, we must have o; = 0,1 < ¢ < m. So
we conclude that aB3 is a linearly independent set over F'. By the invariance of dimension
property it must also be the case that this is a spanning set (if it were not, then we can
throw in some ¥ and still have linear independence, but then we would end up with a basis
with more than m elements) and we conclude it is a basis.

From this we conclude that in fact A, is onto (fiax1 + -+ + fima@Tm = Mo(f1T1 + - +
fm@Ty,) since A is commutative) and therefore 3% such that @ = 1. This implies 7 = (a)~*
since A/P is a domain (dropping the bars, we have ax = 1 so zax — x = (za — 1)x = 0,
which implies za — 1 = 0 and hence za = 1 since x # 0). Since this holds for all a € A\ P
(& a +#0), we find that A/P is a field and hence P is maximal.

(b) First notice that any ideal of A is also a vector subspace of A. Next we claim A is
Artinian (in fact also Noetherian): Let I C J be ideals of A. Since they are both subspaces
of A it must be the case that the dimension of J is strictly greater than that of I (let
B = {z1,22,...,2,} be a basis of I, then it must be the case that there is an element in
y € J which does not lie in the F—span of B. Then we see that BU{y} is part of a basis for
J). Therefore any chain of ideals can have at most dimg(A) + 1 terms and hence is finite.

The result now follows from the fact that an Artinian ring can have only finitely many
maximal ideals: Let C be the set of all ideals that can be written as an intersection of
maximal ideals of A. Since A is Artinian, C has a minimal element M = MyNMsN---NM,.
Let N be a maximal ideal which is not one of Mi,..., M,. By the minimality of M,



NNM =M and hence M C N. We claim that this implies M), C N for some 1 < k < n:
Let k& — 1 be the largest number such that My C N, where Mk 1 is the intersection of
all Mj for j < k—1 (if Kk —1 =0, then M, CN) Let © € My_1 \ N. For all y € My,
Ty € Mk WMy, C M_1N M, CN (by the maximality of £ — 1), so since N is maximal and
hence prime, this implies y € My. This holds for all y € My so My C N. Since My is a
maximal ideal, M} = N and therefore My, ..., M, are all the maximal ideals of A. ]

e Algebra: An algebra is a set A over a field F' such that

— A is a vector space with respect to addition and multiplication by elements of
the field.

— A is a ring with respect to addition and multiplication.

— (Aa)b = a(\b) = A(ab) for any A € F, a,b € A.

Ideals of the ring A are the same as the ideals of the algebra A. If I C A is an ideal,
then I is also a subspace of the vector space A over F.

e Basis: Let V' be a vector space. {e1,ea,...,e,} is basis of V' if any of the following
equivalent conditions are satisfied:

— Every v € V can be uniquely expressed as a linear combination of ey, es, ..., e,.
— It is a set of linearly independent vectors that span.

— It is a maximal linearly independent set and a minimal spanning set.

e Invariance of Dimension Property: If V' is a finite-dimensional vector space, then any
two bases of V' have the same (finite) number of elements.

e Prime Ideal: Let R be a ring. A proper ideal P C R is a prime ideal if given a,b € R

abe P—acPorbeP.

e P Prime < R/P a Domain: Let R be a commutative ring. P C R is a prime ideal if
and only if R/P is an integral domain (i.e. has no zero divisors).

e M Maximal < R/M a Field: Let R be a commutative ring. M C R is a maximal
ideal if and only if R/M is a field (use the Correspondence Principle and the fact that
a commutative ring is a field if and only if it has no non—trivial ideals).

e Ideal ~» Subspace: Let F' be a field and R a finitely generated algebra over F'. Then
an ideal of R is also a vector subspace of R (viewed over F').



e Artinian: Let R be a commutative ring. R is Artinian or satisfy the descending chain
condition (D.C.C.) if whenever

L DILbDI3D...

is a decreasing chain of ideals of R, then there is some m € N such that I, = I,,,,Vk >
m. Similarly for an R—module, with submodules replacing ideals. The following are
equivalent.

(1) R is an Artinian ring.

(2) Every nonempty set of ideals of R contains a minimal element under inclusion.

— An Artinian ring has only finitely many maximal ideals.

— A finite dimensional algebra over a field is both Noetherian and Artinian.

e ANBCP= ACPor BC P: Let R be acommutative ring. Let A;B C R be
ideals and suppose P is a prime ideal such that AN B C P. Then A C P or B C P.

Problem 2.2. Let A = M, (F) be the ring of n x n matrices with entries in an infinite field
F for n > 1. Prove the following facts:

(a) There are only 2 two—sided ideals of A;

(b) There are infinitely many maximal left ideals of A. Hint: Show that Az = Ay(x,y €
A) if and only if Ker(x) = Ker(y).

Solution: (a) Suppose I is an ideal of A. We claim that the set of entries of matrices
in I form an ideal in F: Let E;; denote the matrix with the it entry equal to 1 and the
rest of the entries equal to zero. If o € I, then E;;aF;; = oy E;j, where oyj is the ’L'jth entry
of a. By interchanging rows and columns (which correspond to multiplying by appropriate
matrices in A: On the left (for rows) or right (for columns) by the matrix obtained from
the identity matrix by interchanging the appropriate rows or columns), we can transform
a;;E;; into oy E11. This shows that for each element x that shows up as an entry of a
matrix in I, xEqy € I. Since 2E11yE11 = xyF11 and ©E1; +yE1; = (¢ +y)E11, we see that
the set of entries of matrices of I form an ideal Ip C F.

Now we can set up a natural map
A : {ideals of A} — {ideals of F'} : [ — Ip.

A is clearly onto since given J C F an ideal, M, (J) C M, (F) is an ideal. We claim that A
is also 1-1: Suppose I # I' C M, (F) are ideals. By the operations described above, given
any ¢ € Ip, xE;; € I, V1 <1i,j <n. Adding such xF;;’s together, we may form any element
of M, (Ir). Conversely it is clear that I C M, (Ir) and therefore I = M, (Ir). Similarly,
I' = M,(I). We conclude M, (Ir) # M,(I) and so Ir # If.



A is therefore a bijection so the only two—sided ideals of A are 0 and A, corresponding
to the only ideals of F', namely 0 and F' (if I C F' is a non—zero ideal, then let 0 # z € I.
Since F is a field, z is invertible, so then 2~! - 2 = 1 € I which implies that I = F).

(b)

e Ideals of M,,(R): Let R be a ring with identity. Then every two—sided ideal of M, (R)
is equal to M,,(J) for some two-sided ideal J C R.

e Some Matrix Operations: Let R be a ring with identity. Let E;; € M, (R) be the
matrix with the 75" equal to 1 and all other entries equal to 0. Let I denote the
identity matrix.

— Let A e Mn(R) Then EUAEZJ = aijEij, where Qij is the ijth entry of A.
— There are three elementary row and column operations:

x Interchanging two rows or columns.
x Adding a multiple of one row or column to another.
* Multiplying any row or column by an element of R*.

— Applying a row [column] operation « [3] to A corresponds to multiplying A
on the left [right] by the (invertible) matrix obtained from I by applying the
operation to I, i.e. «(A) = «a(I)- A [B(A) = A-B(])].

e Ideals and Fields: If F' is a field, then the only ideals of F' are 0 and F'.

Problem 2.3. Let Fy be the field with 2 elements and A = F5[T’, 7] for an indeterminate
T. Prove the following facts:

(a) The group of units in A is generated by 7.

(b) There are infinitely many distinct ring endomorphisms of A.

(¢) The ring automorphism group Aut(A) is of order 2.

Solution: (a) First observe that every element of A can be written as Tim, for some
f € Fo[T],m € N: A generic element looks like

AT +a_m_yy - +ag+ar T+ +a, 1"
Multiplying and dividing by 7™, we can write this as
a—m + a_ ()T + -+ agT™ + a; T™ + -+« + @, T

Tm
Now suppose Tim is a unit A. Then Tim% = % = 1 for some % € A. So then

fg = T, which implies that f = T%, | € Z. So each element of A is some power
(positive or negative) of T and hence T generates A* as an infinite cyclic group.

10



(b) Consider the map T' — T™, for some n € Z. This can be extended to some map
¢n : A — A as follows: For all a,b € Fo, m,m’ € Z, let

Gn(aT™ + T = agn (T)™ + b (T)" = aT™ + bT™" ,m € Z.

By construction ¢, is an endomorphism. If n # m, then ¢, # ¢, (e.g. the images of T" are
not the same) and hence there are infinitely many endomorphisms since there are infinitely
many integers.

(c) Let ¢ be an automorphism. Then ¢ maps a unit to a unit (if x € A is a unit, then
d(z) - plx™t) = p(z-271) = ¢(1) = 1, so ¢(x)~! = ¢(z~1)). So in particular ¢ must be
a group automorphism of A* = (T') = (Z,+), by part (a) (the isomorphism is given by
T +— 1€ Z). We claim the automorphism group of Z has only 2 elements, given by 1 — 1
and 1 — —1: Suppose ¢ € Aut(Z) and ¢(1) =n € Z. Then

(n=1)¢" (1) =¢" (n-1)=¢""(n) ¢~ (1) =1 -9 (1),

so 1 = n¢~1(1), which implies n = +1 since ¢~!(1) is an integer. So we conclude the only
automorphisms of (T') are given by 7' +— T and T — % and these clearly extend to be
automorphisms of A. ]

e Aut(Z): The automorphism group of (Z, +) has exactly two elements, given by 1+ 1
and 1 +— —1.

3 Fall 2002 — Ring Theory

Problem 3.1. Let R be a commutative ring with 1, and let S = R[z] be the polynomial
ring in one variable. Suppose M is a maximal ideal of S. Prove that M cannot consist
entirely of O—divisors. Hint: You may want to distinguish the cases x € M and = ¢ M.

Solution: First suppose x € M. Suppose f-z = 0 for some f = ap,z"+- - -+ajz+ag € S.
Then a; = 0,V1 < i <nso f =0 and we conclude x cannot be a 0—divisor. Now suppose
r ¢ M. M is maximal so S/M is a field. Therefore there exists some f such that Zf = 1.
Hence zf + M =1+ M and so zf — 1 = g € M. Suppose towards a contradiction that g
were a O—divisor. Then there exists some 0 # h € S such that xfh —h = gh = 0. But then
xfh = h, so that h = 0 since deg(xzfh) > deg(h) + 1, a contradiction. O

Problem 3.2. Let R be a commutative ring with 1, and suppose I and J are ideals of R
so that: I + J = R. Show that:

() IJ=1InJ.
(ii) R/IJ~ R/I® R/J.

11



Solution: (i) First it is clear that IJ C I N J (since ideals are closed under multiplica-
tion). Conversely suppose a € I NJ. Since I + J = R, there exists x € I,y € J such that
x +y = 1. Therefore a = a(x + y) = ax + ay = za + ay € 1.J, since R is commutative.

(ii) Let
¢p:R— R/I®R/J:r— (r+1,r+J).

Then ¢ is surjective homomorphism: That ¢ is a homomorphism is clear. To see that ¢ is
surjective, note that since I +J = R, dx € I,y € J such that x +y = 1. Then

O+Lax+d)+y+1,0+J)=0¢)+é(y) =d(x+y) =0(1) = (141,14 J).

So it must be the case that ¢(z) = (0+ I,1+ J) and ¢(y) = (1 + 1,0 + J). Now if
(r+1,s+J) € R/I® R/J is arbitrary, then

d(zs+yr) = d(x)p(s)+o(y)o(r) = (0+I, 14+J)(s+1, s+J)+(14+1,0+J)(r+1,r+J) = (r+I,s+J).
So we see that ¢ is surjective. Next,
ker(p) ={reR|rel,reJ}t=1INJ
So by the First Isomorphism Theorem,
R/(INJ)=ZR/I®R/J.

By (i), INJ =1J,s0 R/IJ=R/I® R/J. 0

e Product of Ideals: Suppose I and J are ideals of a commutative ring R. Then IJ is
the ideal consisting of all finite sums of elements of the form zy,x € I,y € J.

e Chinese Remainder Theorem: Let A;, A2 be ideals of a commutative ring (with 1) R.
If A} and As are comaximal (i.e. A; + As = R), then A; N Ay = A1 As and

R/(AlAQ) = R/(Al N Ag) = R/Al X R/A2

— This generalizes to the case of more ideals A1, Ao, ..., A, under the condition
that for all i # j, A; and A; are comaximal.

— An application of this gives us the following: Let n be a positive integer with

factorization p{'p3?...pp*. Then

Z/nZ = (LZ/p{ L) x (Z/ps*Z) X --- X (Z/pp*7)
as rings so that in particular

(Z/nD)* = (Z/p)* x (B/p$PT)* x - x (B/pT)*.

12



— From the last equation we learn that ¢ is multiplicative, where ¢ is the Euler—¢
function (counts the number of integers less than n that are relatively prime
to n). Clearly ¢(p®) = p*~1(p — 1) for p prime. Using these two facts we can
determine the value of ¢ for any (positive) integer.

Problem 3.3. Let R be a commutative ring with 1, and let S = R[z] be the polynomial
ring in one variable. Let f € S. If f is a unit of S (that is, f is invertible in S), show that
f has the form f = u 4+ ¢g where u is a unit in R and g € S is a nilpotent element without
constant term.

Solution: Let P C R be a prime ideal. Reduce all coeflicients of f modulo P. Since
(R[z])*, f € (R[z])* (3g € S such that gf = 1, reducing modulo P, we get that

f
g ). Say f = apa™ + an_12" "' 4+ --- + ag, then it must be the case that

c
f
aiEP,lgiSnandaoeﬁx

since R is a domain so the units of R[z] are exactly the units of R. Since P was arbitrary,
we conclude that a; € [)p prime P,1 < i <nandag ¢ P for any prime ideal P. This
immediately implies that ag € R* since ag is not in any maximal ideal (maximal ideals are
prime) hence not in any proper ideal of R (if ap ¢ R*, then ag € (ag) C R).

Next we claim that (1), prime P = nil(R), where

nil(R) ={z € R| 2" =0, some n € N}

is the set of nilpotent elements of R. First suppose x € R, then In € Nsuch that z" =0¢€ P
for any prime P. Since P is prime, z* € P for some k < n. Supoose k is minimal such that
aF € P. If k > 1, then = - 2¥~! € P, but then either z € P or k — 1 € P, contradicting the
minimality of k, so k =1 and = € P. Conversely, suppose x ¢ nil(R). Let F be the family
of all proper ideals not containing any power of z. F # () since 0 € F. Chains in F have
upper bounds (if zF e I; for any I; in the chain Iy C I C ... then z* is also not contained
in the union of them), so by Zorn’s lemma there is a maximal element P. P must be prime,
since if xy € P and x,y ¢ P, then 2" € (x) + P, 2™ € (y) + P for some m,n € N by the
maximality of P. But then 2" € (zy) + P = P, a contradiction. So x ¢ P.

Finally, g = ap2"+a,_12" '+ -+a;x is nilpotent in S: Let a; be such that aio‘i = 0. Let
N be the maximum of a;, 1 < i < n. Then gV = (@na™ +an 12" - ~—i—a1x)N” = 0 (each
term in the expansion must have some coefficient a%” . ..a{* such that o, +---+ a3 = Nn,
which implies that there is some «; such that a; > N) and hence g is nilpotent. ]

e Polynomial Ring of Domains: Let R be an integral domain and p(x),q(x) € R[x].
Then we have
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(1) deg(p(z)q(x)) = deg(p(x)) + deg(q(x)).
(2) (R[z])* = R*.

(3) R[z] is an integral domain.

e Nilradical: Let R be a commutative ring. Then the nilradical of R is exactly the
intersection of all prime ideals in R.

e Zorn’s Lemma: If A is a nonempty partially ordered set in which every chain has an
upper bound then A has a maximal element.

e Krull’s Theorem: Let R be a ring. Let A C R be an ideal and S C R a multiplicative
set (a multiplicative set is a set such that if x,y € S then zy € S, e.g. the R\ P for a
prime ideal P is a multiplicative set). Suppose A NS = ). Then there exists a prime
ideal P maximal with respect to A C P and SN P = .

4 Winter 2003 — Rings

Problem 4.1. Give an example of two integral domains A and B which contain a field F
such that A ®r B is not an integral domain. Justify your answer. Hint: Take A to be the
field of rational functions F,,(X) for the field F,, with p elements.

Solution: Consider the tensor product C ®g C viewed as an R—-algebra. Notice that
((@i)(iei)=i?®i=(-1)e(-1)= (-1 (-1)=1.

So that [(1®7) — (1®1)][(i ®i)+ (1 ®1)] = 0, with neither of the factors equal to zero. So
C ®r C is not an integral domain.

e Tensor Product: Let R be a commutative ring. Let M, N be modules over R. The
tensor product of M and N over R, denoted M ®pg N, is the quotient of the free
Z—module on the set M x N by the subgroup generated by

(ml +ma, 7’L) - (mlv n) - (m27 n)7 (ma ni +n2) - (’I?’L, nl) - (m7 n2)7 (mr, ’I’L) - (m7 7“71).
We have the relations
(m1+m2) ®n=m1 @n+ma@n,

m® (n1 +nz) =men; +m ny,

mr@@n=marn.
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— Notice that 0@ n =m ®@n =0 for any m € M,n € N.
— M ®pg N is a left R—module such that if » € R, then

r(m®n) = (rm)®n=m® (rn).

— Universal Property of Tensor Products: If L is any left R—module, then there is
a bijection

R-bilinear maps R—module homomorphisms
¢ MxN—>L »— ®:M®rN — L
given by
To® =0,
where

T:MxN—-MrN:(mn)—men

is a bilinear map. This basically follows from the Universal Property of Free
Modules: If A is a set and F(A) is the free R—module on the set A (i.e. all
elements of the form riay 4+ reas + - - - + rpay,, for r; € R,n € N such that each
element of F(A) has a unique expression of this form), then any map from A
into a group G can be uniquely extended to a R—module homomorphism from
F(A) to G.

— If A and B are R-algebras, then
(a®b)(d @) = ad @bV

is well-defined and makes A ®zp B into an R-algebra.

— Notice that R®r R = R and (M & M') @p N = (M ®r N) ® (M’ ®p N) and
M@r (N N')2 (M®pN)® (M ®N'), so that if M, N are free with bases
mi,...,msand ni,...n; then M ®g N is free of rank st, with basis m; ®n;, 1 <
i<s,1<j<t, ie.

R*®p R' = R,

Problem 4.2. Let I, be the finite field of ¢ elements, and put F' = F; and K = 2. Write
o0 : K — K for the field automorphism given by x? = z9. Let

(e

for a given d € F*. Prove the following three facts:

a,beK}
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(a) B is a subalgebra of dimension 4 over F' inside the F—algebra of 2 x 2 matrices over
K.

(b) B is a division algebra if and only if there exists no ¢ € K such that d = cc?.

(¢) B cannot be a division algebra.

Solution: (a) Let {1, a} be a basis for K over F. Then

{10\ a 0\ 0 1Y\ 0 a)
s={(0 1) =28 o )=o) =5 (e §) =)

is a basis for B over F. Let char(K) = p and ¢ = p", some n. To see that B spans, suppose
a=x+ya,b=w+ za, z,y,z,w € F, then

[ Tty 0 0 w+za a b
MﬁyA”wI"“Ab_( 0 x+ya">+<wd+zdoﬂ 0 )_<db" @ )

where the last equality comes from the fact that since char(K) = p and v = v,Vy € F,
(z +ya)! = (z +ya)" =27 +yla? =z + ya?

(p| (p]:), 1 <k < p") and similarly d(w + za)? = d(w + za?).

For linear independence first note that I, and A, are linearly independent over F' since
1 and « are. I, and Ap are both linearly independent from both I, and A, because of the
position of 0’s. Finally, I, and A are linearly independent from each other again because
1 and « are linearly independent.

(b) First suppose there is some ¢ € K such that d = cc” = ¢9*!, then set b = 1 and

a = c and we get
c 1
AE<Cq+1 Cq)EB.

Clearly A # 0 but det(A) = 0 so A cannot be invertible and hence B is not a division
algebra. Conversely suppose B is not a division algebra. Then da,b € K, not both equal to

zero, such that A = ( dzq ci)q is not invertible. This implies det(A) = a?t! —dbi*! = 0.
If either a or b is equal to zero, then that forces the other to be 0 (since K has no zero
divisors) and then A = 0 so suppose a,b # 0. Then the equation says a?t! = db?*!, which
implies d = (ab=1)4*! = ab~'(ab™1)“.

(c) By (b) it suffices to show that there is some ¢ € K such that cc” = 9t = d.
Consider the polynomial f = 29t! — d over F. We claim that f has some root ¢ € K (of
course then d = cc?): d € F* so di~! = 1, so we have

2

g0 —d| (2 — @ =T 1| 2t —x=a"" —a.
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From this we conclude that there is a root of f in K since |K| = ¢> = p*" and hence K is
the splitting field of P - O

Problem 4.3. Let A be a discrete valuation ring with maximal ideal M, and define
B ={(a,b) e Ax A|a=bmod M}.

Prove the following facts:
(a) B has only one maximal ideal;

(b) B has exactly two non—maximal prime ideals.
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