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Kesten’s “Fences”. Here we introduce multiple crossing events of an annulus and quantify

notions of “well–separatedness”. These technical results will be used in establishing the

scaling relations (algebraic equations relating various critical exponents).

Definition. Let 0 < n < N and j > 0 be integers. Also let

σ = (σ1, . . . , σj) ∈ 2[j]

denote a sequence of colors, e.g., (blue, yellow, yellow, blue) and we identify σ up to cyclic

permutations. We define the arm crossing events to be

Aj,σ(n,N) := {ω : ∂Bn  j,σ ∂BN},

i.e., the event of j disjoint monochromatic crossings of the annulus BN \Bn, with the colors

(up to cyclic order) prescribed by σ. We will sometimes omit (n,N) when it is not needed.

[picture of example of arm event...]

Remark. By Reimer’s inequality we immediately obtain the multiplicative bound that

P(Aj+j′,σσ′) ≤ P(Aj,σ) · P(Aj′,σ′).

Next we define what it means for crossings to be “well–separated”.

Definition. Consider the box BM = [0,M ]× [0,M ] and denote by

C = {ci, σi}ji=1
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a sequence of (deterministic) left right crossings with colors encoded by σ. Given a crossing

ci, let

zi = landing point on the right side of BM .

Also, let η > 0, and let

ri = zi + [0,
√
ηM ]× [−ηM, ηM ]

be small rectangles attached to each zi. (This will be used to quantify extension of crossings.)

Then we say that C is well–separated at scale η if:

• zi’s are far from each other and from the corners on the right :

∀i 6= j, dist(zi, zj) ≥ 2
√
ηM

∀i, dist(zi, (0,M)) ≥ 2
√
ηM, dist(zi, (M,M)) ≥ 2

√
ηM.

[picture of well–separated with space between crossings and scales labeled...]

• Each ri is crossed vertically by some crossing c̃i of ri and

ci  c̃i in B√ηM(zi).

Here all crossings are of the same color: we are requiring a small extension of ci.

[picture of only right side of BM and off scale local picture of what happens at zi, with

the various crossings labeled...]
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Finally, we say that C can be made well–separated if there exists a well–separated C ′ with

the same endpoint as C on the left.

[picture of C, not well–separated in solid, a well–separated C ′ in dots...]

This notion can be directly adapted to annular crossing, where we separately require

well–separatedness on all relevant sides used by the crossings.

Definition. Let 0 < n < N be integers and let η, η′ > 0. Denote by

Aη;η′

j,σ (n,N) := {∂Bn  
η;η′

j,σ ∂BN}

the subevent of Aj,σ with the additional stipulation that we have well–separatedness on all

relevant sides.

[picture of annulus with well–separatedness imposed so that corners, etc., are shaded out:

for the internal box corner avoidance means avoiding a region surrounding each corner and

the rectangles ri lies inside the small box...]

The definition can be generalized to landing intervals, i.e., intervals Ii such that zi ∈ Ii:

Definition. Consider landing intervals {Ii}i=1,...,j on ∂BN . We say they are η–separated if

• dist(Ii, Ii+1) ≥ 2
√
ηN

• dist(Ii, (N, 0)) ≥ 2
√
ηN , dist(Ii, (N,N)) ≥ 2

√
ηN .
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Also, we say they are landing intervals of scale η if

length(Ii) ≥ ηN.

We identify landing intervals up to rescaling : I ∼ Ĩ if I ∈ ∂Sn, Ĩ ∈ ∂SN , with Ĩ = N
n
· I.

We can now define the events

Aη;η′

j,σ (n,N) ⊇ Aη,I;η
′,I′

j,σ (n,N) := {∂Bn  
η,I;η′,I′

j,σ ∂BN},

so that

zi ∈ Ii, z′i ∈ I ′i.

Finally, we define the relaxed events

AI;I
′

j,σ (n,N) := {∂Bn  
I;I′

j,σ ∂BN},

with the requirement of η–separatedness replaced by (merely) disjointness and without re-

quirement of free space (i.e., the ri’s).

Remark. Note that we have the containments

Aη,I;η
′,I′

j,σ ⊆ Aη;η′

j,σ ⊆ Aj,σ;

Aη,I;η
′,I′

j,σ ⊆ AI;I
′

j,σ ⊆ Aj,σ.

Characteristic Length Revisited. Recall that

p > pc ⇐⇒ lim inf
L→∞

Cp(L,L) = 1 ⇐⇒ lim sup
L→∞

C∗p∗(L,L) = 0 ⇐⇒ p∗ < p∗c ,

whereas at p = pc, there are non–trivial upper and lower bounds for crossing probability at

all scales : there exists 0 < σ, σ′ < 1 such that

1− σ′ ≤ Cpc(L,L) ≤ σ.
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For p off criticality we can define a characteristic length up to which the crossing probability

is well–behaved: given ε0 > 0, let

Lε0(p) = inf
n
{Cp(n, n) ≤ ε0}, p < pc;

Lε0(p) = inf
n
{C∗p(n, n) ≤ ε0}, p > pc.

so that if e.g., p < pc, then

Cp(Lε0(p)− 1, Lε0(p)− 1) ≥ ε0, Cp∗(Lε0(p)− 1, Lε0(p)− 1) ≤ 1− ε0

and

Cp(Lε0(p), Lε0(p)) ≤ ε0 =⇒ C∗p∗(Lε0(p), Lε0(p)) ≥ 1− ε0.

We make the following observations:

• Thus, for all n < Lε0 , both the direct and dual crossing probabilities are bounded

away from 0 and 1 and thus we have scale invariance up to Lε0 and may use RSW

constructions.

• If pc = 1/2 (particularly site percolation on the triangular lattice) then by complete

symmetry we have Lε0(p) = Lε0(1− p).

• We also observe that if ε0 < σ (lower bound for crossing probability at criticality) then

Lε0 →∞ as p↗ pc,

since otherwise we have that Cpn(Lε0(pn), Lε0(pn)) ≤ ε0 < σ which as pn ↗ pc contra-

dicts the fact that Cpc(L,L) < σ for all L. A similar argument with the dual model

when ε0 < 1− σ′ gives that also,

Lε0 →∞ as p↘ pc.
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• Therefore, for

ε0 < min{1− σ′, σ}

the characteristic length diverges at p = pc; we take this to be the convention and 1)

will now suppress the ε0 subscript and 2) in what follows if p is off critical then all

relevant length scales are assumed to be less than L(p).

Well–Separatedness. We will first establish the following:

Theorem. Fix some 0 < p < 1 and N > n positive integers. Let j ≥ 1 be an integer, σ be

some color sequence, and η0, η
′
0 ∈ (0, 1). Then

Pp(Aη̃;η′

j,σ (n,N)) ∼η0,η′0 Pp(Aj,σ(n,N)),

uniformly for all η̃, η′ ≥ η0, η
′
0. Here ∼ means upper and lower bound up to a constant.

Remark. We will later obtain a strengthening of this theorem which also allows for prescrip-

tion of landing areas. We do this in two stages in order to make more explicit the “corridors”

construction.

We first state some consequences of the RSW estimates for the “decorated” Aj,σ events.

Remark. In what follows we will only consider the external boundary (i.e., landings on the

outer boundary of the annulus) since arguments for the internal boundary is similar and

will suppress the indices η′, I ′ whenever possible (with the implicit understanding that it is

possible to take a different scale for the internal boundary).

Proposition. For fixed j ≥ 1 and color sequence σ, uniformly for all η ≥ η0:

1. Extendability:

P(Aη0j,σ(n, 2N)) ∼ P(Aηj,σ(n,N))

P(Aηj,σ(n/2, N)) ∼ P(Aη0j,σ(n,N))

2. Quasi–multiplicativity: (here • denotes absence of condition)

P(A•;ηj,σ(n1, n2/4)) · P(Aη
′;•
j,σ (n2, n3)) ∼ P(Aj,σ(n1, n3)).
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3. For η > 0 there exist intervals I of size η such that

P(Aη,Ij,σ(n,N)) &η P(Aηj,σ(n,N)).

4. There exist exponents

0 < αj, α <∞

such that ( n
N

)αj

.j P(Aηj,σ(n,N)) .
( n
N

)α
.

Proof. These are fairly straightforward RSW/FKG “gluing” constructions like before. In-

deed, the definitions of fences etc., is precisely to permit the appropriate continuations.

Even though the arm colors may be different and so we are considering intersections of

increasing and decreasing events, because of well–separatedness, independence can be used

to show that

P(Ã+ ∩ Ã− | A+ ∩ A−) ≥ P(Ã+) · P(Ã−),

where A+ and A− depend on disjoint sets of vertices and Ã± may in addition depend on

another (disjoint from the previous) set of indices.

1. Here we may realize A(n, 2N) as a continuation of A(n,N) “one arm at a time”. E.g.,

focusing on one arm landing on the right side, we have the inclusion

Aηj,σ(n,N) ∩ C(N +
√
η0N, 2η0N) ∩ C(√η0N, 2η0N) ⊆ Aη0j,σ(n, 2N),

so that estimating the crossing probabilities using RSW, we indeed have

P(Aηj,σ(n,N)) .η0 P(Aη0j,σ(n, 2N)).
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[picture of continuation from ∂BN to ∂B2N ...]

The reverse inequality is of course entirely clear.

2. This can be done in a similar fashion.

3. Here we note that e.g., the outer boundaries of the annuli can be covered with at most

8η−1 intervals I of length η, and we may partition the event Aηj,σ according to the

landing points zi, and therefore at least one I contains at least an average number of

landing points, i.e.,
P(Aηj,σ)

8η−1
≤ P(Aη,Ij,σ).

4. For the upper bound we note that the crossing event can be avoided by circuits in

annuli: assume without loss of generality that σ requires at least one yellow crossing.

We may set up of the order log(N/n) annuli (all of the same aspect ratio) inside BN\Bn,

for each of which with independent independent probability

α′ = P(∃ blue circuit) > 0

there is a blue circuit preventing the relevant arm crossing. Therefore

P(Aηj,σ(n,N)) . (1− α′)log(N/n) . (e−α
′
)log(N/n) =

( n
N

)α′
.

[picture of logarithmically many annuli, with some circuits...]

For the lower bound we iterate item 1 of the order log(N/n) times (e.g., consider

a “coarsened” scale defined by n and double each time) each time except the first

incurring

λj = e−αj = cost of continuing the crossing.
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The intersection of all such events lies in Aηj,σ and so with e.g., Cj = P(A(n, 2n)) the

probability at the initial scale, we have

Cj · (e−αj)log(N/n) = Cj

( n
N

)αj

. P(Aηj,σ).

Once the theorem is proved, we will then have the above results for the unadorned arm

crossing events Aj,σ (up to more constants).

Proof of Well–Separatedness. It is certainly clear that

P(Aηj,σ) ≤ P(Aj,σ),

so it is sufficient to establish the reverse inequality (up to a constant). Also, it is sufficient

to consider n,N such that

n = 2k, N = 2K , k ∈ N.

(For generic n, we find k,K such that 2k−1 < n ≤ 2k, 2K ≤ N < 2K+1.)

We consider some fixed scale of separation η̃ ≥ η0 and aim to show that

P(Aη̃j,σ(2k, 2K)) &η0 P(Aj,σ(2k, 2K)).

From now on we fix j, σ and suppress these indices.

The proof consist of these steps:

• First consider doubling of a single scale. Observe that each annulus can be decomposed

into four U–shaped regions such that the existence of an arm in the annulus implies

the existence of a shortway crossing of the U–region.
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[annulus decomposed into four U–shaped regions; shade portions of the ∂U on which

landings should be made well–separated, different for internal/external boundaries...]

• For both external and internal boundaries of the annulus, given δ > 0, show that

there exists η(δ) > 0 such that the crossings can be made η(δ)–well–separated with

probability in excess of 1− δ > 0.

• Sum up over K − k subannuli: we consider the external boundary (the case of the

internal boundary is done similarly, summing in the “other direction”).

[picture of A(2k, 2K) divided into “even” log scales, summing from large to small...]

Let

U2`(η) = {crossing of all U–shaped region corresponding to A(2`−1, 2`)

is η–well–separated}.

Then we may decompose the event A(2k, 2K) according to whether the crossings are

well–separated :

A(2k, 2K) ⊆ A•;η(2k, 2K) ∪ [ [U2K (η)]c ∩ A(2k, 2K−1) ].

From the previous item, we have that for all ` > 0,

P([U2`(η)]c) ≤ 4δ,

and, also, the events U2K−1(η) and A(2k, 2K−1) occur in disjoint regions and are inde-

pendent. Therefore,

P(A(2k, 2K) ≤ P(A•;η(2k, 2K)) + 4δ · P(A(2k, 2K−1)).
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Iterating K − k times, we obtain the estimate

P(A(2k, 2K)) ≤ P(A•;η(2k, 2K)) + 4δ · P(A•;η(2k, 2K−1)) + (4δ)2 · P(A•;η(2k, 2K−2)) + . . .

+ (4δ)K−k−1 · P(A•;η(2k, 2k+1)) + (4δ)K−k.

• To continue note that

1) from the previous Proposition, 1, we have for any m,

P(A•;η(2m, 2m+1) .η P(A•;η0(2m−1, 2m),

that is, we can go from η–separated to η0–separated at a constant cost;

2) going from 2m to 4m remaining at scale η0 incurs some cost C0. That is, we have

P(A•;η(2k, 2K−`) .η C
`−1
0 · P(A•;η0(2k, 2K)).

The previous estimate becomes then (we may drop the term involving A•;η(2k, 2K) at

the cost of an upper bound; i.e., “shorten” the crossing):

P(A(2k, 2K)) .η (1 + 4δC0 + · · ·+ (4δCK−k−1
0 ) · P(A•;η0(2k, 2K)).

We may conclude by choosing δ so that

4δC0 < 1;

3) finally, using the previous Proposition, 1, we may return to the original scale η̃:

P(A•;η0(2k, 2K) .η0 P(A•;η̃(2k, 2K).

It remains to prove:
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Lemma. Given δ > 0, there exists η(δ) > 0 such that for all η ≤ η(δ),

P(UN(η)) ≥ 1− δ.

Proof. (Sketch) The statement follows from a sequence of RSW constructions: The event of

a set of crossing being not η–well–separated can be prevented by existence of suitable circuits

in annuli.

1. (Corners) Near the corners, setting up of the order − log η annuli we have that with

uniform and independent probability > δ′ there exists blue and/or yellow circuits,

preventing the possibility of a crossing going near said corner:

[picture annuli around corners with circuits of both colors...]

Therefore,

P(∃ a crossing landing near the corners) . (δ1)−C log η,

for some constant C > 0.

2. Since the existence of a circuit in the original annuli prevents the possibility of a

crossing in UN ,

P(∃ 1 monochromatic crossing in UN) ≤ (1− δ2),

for some δ2 > 0. Thus, by Reimer’s inequality,

P(∃ at least H disjoint monochromatic crossings in UN) ≤ (1− δ2)H .

We therefore choose T to be such that

(1− δ2)T < δ/2,
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so that it is unlikely for there to be more than T crossings. Notice that T is fixed (in

particular independent of η).

3. To handle the crossings themselves, first enumerate crossings from the bottom (look

at the lowest monochromatic crossing, then the next, etc.) and call the resulting set C.

Conditioned on the kth lowest such crossing γ, the region above is independent, and

thus we can perform another RSW construction as in the corners case to ensure no

other crossing comes within
√
η of γ.

Yet another RSW construction gives the appropriate extension of any such crossing.

We say γ is good if all such circuits exist, so then we have

P(γ is not good ) . (δ3)−C
′ log η,

for some δ3 > 0.

[picture annuli above right landing point of γ preventing other crossings and continu-

ation...]

4. Therefore with high probability the set C can be made well–separated:

P(C not η–well–separated) ≤ P(|C| ≥ T )

+
T−1∑
k=1

P(|C| ≥ k and γk is not good)

+ P(∃ crossing landing near the corners)

. δ/2 + (T − 1) · (δ3)−C
′ log η + (δ1)−C log η

< δ,
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for η > 0 sufficiently small.

5. Finally, we observe that it is sufficient to ensure C is well–separated. Indeed, by its

construction, C is maximal amongst all disjoint sets of monochromatic crossings in UN ,

so given some γ′ ∈ C ′ some other set of crossings:

(a) γ′ must intersect some γ ∈ C and further

(b) taking γ to be the lowest such curve, we see that γ′ hits γ from above and cannot

go below γ.

We can therefore consider instead the curve γ̃ which has first portion equal to γ′ and

the very last portion equal to γ so that γ̃ can be extended via the extension of γ. (This

argument shows exactly that C ′ can be made well–separated.)

[picture of γ′ hitting γ from above either before or after landing of continuation...]

“Corridors” and Rearrangements. As mentioned before, a consequence of existence of

fences is that arms can also be rearranged at constant cost. For simplicity we will explicitly

consider A2,BY .

Corollary. Fix some 0 < p < 1. For any integers N � n ≥ 0 define

A2,BY ⊇ Λ2,BY = {there are landing areas I0 of scale η0 such that

there is a yellow crossing landing on the top boundary

and a blue crossing landing on the left boundary}.
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[picture of two arms with correct landing locations...]

Then for η0 > 0 sufficiently small (e.g.,

P(A2,BY (n,N)) ∼η0 P(Λ2,BY (n,N)).

Proof. As in the proof of the theorem, it suffices to consider n = 2k, N = 2K for K > k ≥ 0.

From the previous Proposition on the adorned crossing events, 3, we already have

P(A•;η0(2k, 2K)) .η0 P(A•;η0,I(2k, 2K))

for some landing interval I. Now we will show that for any m ≥ 0,

P(A•;η,I(2m−1, 2m)) .η0 P(A•;η0,I0(2m, 2m+1)).

Indeed, going from A(2m−1, 2m) to A(2m, 2m+1) we can by RSW relocate the arms inside a

U–shaped region at the cost of an η0–dependent constant (since the crossings stay away from

corners and are well–separated, the appropriate η0–corridors can be constructed):

[picture of two arms both landing on right boundary in inner square, with blue arm above

yellow and corridors relocating blue arm to top and yellow arm continued to right...]

In this particular case the argument shows that we may upper bound the left hand side

by crossings with yellow landing on the right boundary and blue to the top:

A•;η,I(2m−1, 2m)∩C(2m+
√
η0 ·2m)∩C(2η0 ·2m,

√
η0 ·2m)∩C(η0 ·2m, λ ·2m)) ⊆ A•;η,I(2m, 2m+1).
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(Here the term involving λ bounds the crossing in the corridor to the top, so λ ≤ 3/2.) On

the next scale, another corridors construction yields arms landing on the prescribed sides of

the square (top and left):

[picture of blue arm to top, yellow arm to bottom, relocated to correct location on next

largest scale...]

We may now finish by plugging this into the remaining steps of the proof of the theorem

(sum over scales). In other cases, e.g., if we started with both the yellow and blue crossings

to the top, we may relocated the blue arm going counterclockwise:

[picture of blue and yellow arm to top, blue to right of yellow, arrow indicating blue arm

relocated clockwise...]

Corollary. Fix some 0 < p < 1 and integers N � n ≥ 0. Let j ≥ 1 be an integer, σ be

some color sequence, and η0, η
′
0 ∈ (0, 1). Then

Pp(Aη,I;η
′,I′

j,σ (n,N)) ∼η0,η′0 Pp(Aj,σ(n,N)),

uniformly for all η, η′ ≥ η0, η
′
0. Here ∼ means upper and lower bound up to a constant.

Proof. This can be done as in the previous corollary: successively relocate arms and the

theorem (and more careful corridors constructions) yield landings in the prescribed areas.

Consequences. We finish by listing some consequences which will be useful for us.
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Corollary. Fix some j ≥ 1, color sequence σ and 0 < p < 1. Then for N > n > 0,

n3 > n2 > n1 > 0,

1. P(Aj,σ(n, 2N)),P(Aj,σ(n/2, N) ∼ P(Aj,σ(n,N);

2. P(Aj,σ(n1, n2) · P(Aj,σ(n2, n3)) ∼ P(Aj,σ(n1, n3));

3. for any x ∈ RN/2,

P(x ∂RN) ∼ P(0 ∂RN).

Proof. The first two items follow from the corresponding properties for the adorned crossing

events. The last item follows from the first one, since by translation invariance (consider the

shifted boxes centered at x) we have the inequalities

P(0 ∂RN/2) ≤ P(x ∂RN) ≤ P(0 ∂R2N).

[annulus and its shift...]
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