
HEIGHT FUNCTION ON DOMINO TILINGS

1. Summary

We first define the height function on a domino tiling (as done in [1])
and state some of its basic properties. We then revisit the coupling
function and relate it to Green’s function, which allows us to conclude
that the coupling function converges in the limit to an analytic function
with a pole. Using this, we do a general second moment calculation via
the proof found in [1] which writes the moment in terms of integrals of
functions which are conformally invariant.

2. Setup

We work with a simply connected domain U which has smooth bound-
ary and mark some point d on ∂U . For ε > 0, take Pε to be a Tem-
perleyan polynomino in εZ2 approximating U in such a way that ∂Pε

is within O(ε) of ∂U and dε ∈ Pε is within O(ε) of d, where dε is the
removed square of P , and the counterclockwise boundary path of Pε

points locally into the same half–space as the tangent to ∂U to which
it’s near. (For technical reasons we also require that there is a seg-
ment of length δ on ∂Pε which is straight such that δ tends to zero
slowly compared to ε, but we shall not deal with “boundary problems”
here.) Finally, the sentence “I is conformally invariant” means that
if f : U → V is a conformal isomorphism, then∫

γ

Iu(z)dz =

∫
f(γ)

Iv(f(z))dz.

2.1 The Height Function.

Given a domino tiling on the usual setup of black and white squares
(checkerboard tiling), the height function h is a function from the ver-
tices of the domino tiling to Z. The height function is defined up to an
additive constant as follows: fix some vertex v0 and declare the height
there to be zero. Then for any other vertex v, take an edge path γ
from v0 to v which follows the boundaries of dominos (i.e. not allowed
to cut dominos), then the height along γ changes by +1 if the edge
traversed has a black square on its left and -1 if the edge traversed has
a white square on its left (note that the black or white square here may
very well not be inside the domain under consideration).

1



2 HEIGHT FUNCTION ON DOMINO TILINGS

Remark 2.1. The height function is well–defined up to an additive
constant, i.e. once the value at v0 is fixed, the value at v is independent
of the path γ we take. This is because the height change around any
domino is equal to zero and by the discrete version of Green’s Theorem,
the height change along any loop is also zero and hence the height is
path independent.

Remark 2.2. First note that along each straight edge the height alter-
nates, so along a straight edge of even length the height change is zero.
Second, if a path does cross a domino, then the height change is +3 if
when crossing the domino a black square is on the right and the height
change is -3 otherwise.

2.2 Coupling Function.

Recall that the coupling function is the inverse of the Kasteleyn matrix.
For a fixed v1 ∈ W0 ∪ W1, we view C(v1,−) as a function defined
on B0 ∪ B1. So when v1 ∈ W0, the real part of C(v1,−) is defined
on B0 and the imaginary part is defined on B1, whereas when v1 ∈ W1,
the real part if defined on B1 and imaginary part is defined on B0.
For what follows we will work with B0(P ) (vertices of B0 and edges
between these vertices). We denote the external boundary of B0(P )
by Y and let B′

0(P ) = B0(P )∪ Y . We extend the coupling function to
be zero on Y .

3. Convergence of the Coupling Function

Theorem 3.1. We now work on εZ2. Let v1 and v2 be far from the
boundary and not within o(1) of each other, then if v1 ∈ W0,

1

ε
C(v1, v2) =

{
ReF0(v1, v2) + o(1) if v2 ∈ B0,

iIMF0(v1, v2) + o(1) if v2 ∈ B1.

where F0 is analytic as a function of z2, has a simple pole of residue
1/π at z2 = z1, and has no other poles. Also, it is zero at d and has
real part 0 on ∂U .

On the other hand, if v1 ∈ W1, then

1

ε
C(v1, v2) =

{
ReF1(v1, v2) + o(1) if v2 ∈ B0,

iIMF1(v1, v2) + o(1) if v2 ∈ B1.

where F1 is analytic as a function of z2, has a simple pole of residue
1/π at z2 = z1, and has no other poles. Also, it is zero at d and has
imaginary part 0 on ∂U .
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Proof. We do the case v1 ∈ W0. The case v1 ∈ W1 is identical using
the imaginary part of C.

Let G(w1, w2) be the Green’s function on B′
0(Pε), i.e., 4G(w1, w2) =

δw1(w2) and G(w1, w2) = 0 when w2 is on the boundary. Now we have

4ReC(v1,−) = δv1+ε − δv1−ε = 4(G(v1 + ε, v2)−G(v1 − ε, v2)).

Since C also vanishes on the boundary, we conclude that

ReC(v1,−) = G(v1 + ε, v2)−G(v1 − ε, v2).

We will first show that the real part converges, which implies conver-
gence of its derivatives and hence by integrating convergence of ImC
as well. Furthermore the function F0 to which it converges is unique.

Lemma 3.2.

(1/ε)G(v1 + ε, v1)− (1/ε)(G(v1 − ε, v2) → 2∂x1gu(z1, z2),

where gu is the continuous Green’s function on U with boundary value
zero.

Proof. This is a standard argument so we will be brief. Set H =
(1/ε)G(v1 + ε, v1)− (1/ε)(G(v1− ε, v2), and H0 = (1/ε)G0(v1 + ε, v1)−
(1/ε)(G0(v1− ε, v2), where H0 and G0 are the corresponding quantities
for εZ2. First we have H−H0 is harmonic in the second variable (since
the poles subtract) and has bounded boundary values, since it is known
that

H0(v1, v2) = Re
1

π(v2 − v1)
+ O

(
1

|v2 − v1|2

)
.

Also the boundary values of H−H0 are continuous in the limit as ε → 0.
So we let g be the harmonic function with boundary value equal to this
limiting boundary value. Next approximating the discrete Laplacian
of g with the Taylor expansion of g, we find that H − H0 − G has
discrete Laplacian of order O(ε4). Finally, since x + iy goes to x2 has
discrete Laplacian equal to a constant, we can pick constants A, B
big enough so that the discrete Laplacians of both Aε4Re(v2)

2 − (H −
H0 − g)(v1, v2) and Bε4Re(v2)

2 + (H −H0 − g)(v1, v2) are bigger than
or equal to zero. Hence these functions are superharmonic and must
achieve their maximum values on the boundary; since ε4Re(v2)

2 has
order ε2 and H0 has order ε on the boundary, |H − H0 − g| = O(ε)
on the boundary and hence everywhere. So H(v1, v2) converges to the
function Re( 1

π
(v2− v1))+ g(v1, v2), which has boundary value zero and

pole of residue 1/π at v1. This is exactly 2∂x1gu. �

This completes the proof of the Theorem. �
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Now let F+ = F0 + F1 and F− = F0 − F1. One can then show,
using the fact that C is discrete analytic and passing to the limit,
that F+ is analytic also in the first variable and that F− is antianalytic
(i.e. ∂z(F−) = 0) in the first variable. Looking at the behavior of the
pole and using the facts that F0 and F1 are unique, one sees also that F+

and F− also transform in a conformally invariant way under conformal
isomorphisms.

4. Second Moment Calculation

Let x1, x2 be two interior points of U . Let h(x1), h(x2) denote the
height at two points of Pε within O(ε) of x1 and x2, respectively. We
would like to compute

(4.1) E((h(x1)− h)(h(x2)− h)).

We take two disjoint paths γ1 and γ2 from x1 and x2 to the straight
boundary near d (the height is defined to be zero there. In addition we
require that each straight edge of γi has even length (choose parities of
the relevant points so that this is possible).

Now in a given tiling, the height change along γi is equal to 4(Aγi
−

Bγi
), where Aγi

is the number of dominos crossed with black squares on
the right and Bγi

is the number of dominos crossed with black square
on the left: The straight edges are even so the height change along
them is zero, and for each domino crossed, the height changes by +4
or -4, since if the black square is on the right and no domino is crossed
then the change in height is -1 but if there is a domino crossed then the
height change is +3, so the net change is +4; an identical argument
shows the height change is -4 in the case of a domino crossing with
black square on the left (J. Asher). So now (4.1) is equal to

42E((Aγ1 −Bγ1 − (Aγ1 −Bγ1))(Aγ2 −Bγ2 − (Aγ2 −Bγ2))).

Let αjt be the tth possible domino crossed by γj whose black square is
on the right and let βjt be the tth possible domino crossed by γj whose
black square is on the left. We also let α and β denote the indicator
functions of these events. Straight edge paths in γj are even so we can
pair αjt with adjacent βjt′ which are parallel. Rewriting again, we now
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have
(4.2)

E((h(x1)− h)(h(x2)− h))

= 42
∑
t,t′

E[((α1t − α1t)− (β1t − β1t))((α2t − α2t)− (β2t − β2t))]

≡ 42
∑
t,t′

E((A1t −B1t)(A2t −B2t).

Now from the theorem on perfect matchings, if we let ei = (wi, bi),
then

E((e1 − e1)(e2 − e2) = −aEC(w1, b2)C(w2, b1),

where aE is the product of the edge weights of e1 and e2. (A similar
formula holds for more than two terms: We would get the edge weights
times the matrix corresponding to E(e1, . . . , en) with all zeroes on the
diagonal.)

Now observe that each β edge has weight of the opposite sign as the α
edge to which it is paired, so when one expands out the the summand
in (4.2), the signs cancel the sign changes in aE so that we are left with
terms of the form C(w1, b2)C(w2, b1) times the edge weight aE of the α
edges.

Next if we let ri = ±1 according to whether wi ∈ W0 or wi ∈ W1

and si = ±1 according to whether bi ∈ B0 or bi ∈ B1, then from
Theorem 3.1, we can write (in the good cases where nobody is near the
boundary; the bad cases we refuse to think about)

C(w1, b2)

= ε

(
1− r1s2

2
iIm +

1 + r1s2

2
Re

) (
1 + r1

2
F0(w1, b2) +

1− r1

2
F1(w1, b2)

)
=

ε

4
(F+(w1, b2) + r1F−(w1, b2) + s2F−(w1, b2) + r1s2F+(w1, b2)) + o(ε).

So if we let αit = (wα
it, b

α
it) and βit = (wβ

it, b
β
it), then we have, for example,

(4.3)

E(A1tA2t′) =
−aEε2

42
(F+ + r1F− + r1s2F+ + s2F−)(wα

1t, b
α
2t′)

× (F+ + r2F− + r2s1F+ + s1F−)(wα
2t′ , b

α
1t) + o(ε2).

Now in the limit wα
1t, wβ

1t, bα
1t and bβ

1t will all go to zt since they are
all within ε of each other and similarly the t′ vertices will go to zt′ .
We will have four terms like those in (4.3), but observe that if we go

from (wα
it, b

α
it) to (wβ

it, b
β
it), then the sign of ri and si reverse, so in the

limit when we replace the relevant vertices by zt and zt′ , we will have
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cancellations after which we are left only with 4 times the terms with ri

to the same power as si, so we have the summand in (4.2) as

−aEε2

4

∑
ε1,ε2∈{−1,1}

(r1s1)
1−ε1

2 (r2s2)
1−ε2

2 Fε1,ε2(zt, zt′)Fε2,ε1(zt′ , zt),

where F1,1 = F+, F−1,1 = F−, F1,−1 = F− and F−1,−1 = F+.
The final step is to replace the sum over t and t′ by integrals. For this,

we replace 2ε by some phase times dzτ or dzτ , τ = t, t′. For example,
if the path is going east, then 2ε = dxt = dzt = dzt, the α edge has
weight −i and rjsj = −1 (here we are crossing a vertical domino, so
if the black square is type B1 then the white square is of type W0 and
vice versa). Similarly we can find the corresponding values when the
path is going west, north or south. In all cases,

2ε× aE × (rjsj)
1−εj/2 = −εjidz(εj)

τ ,

where dz(1) = dz and dz(−1) = dz.
Finally, constant factors of 4 cancel, (−i)2 cancels the overall nega-

tive sign in front, ε goes to the corresponding dzτ , sum over t and t′

gets replaced by integrals and we are left with

lim
ε↓0

E((h(x1)− h)(h(x2)− h))

=
∑

ε1,ε2∈{±1}

ε1ε2

∫
γ1

∫
γ2

Fε1,ε2(z1, z2)Fε2,ε1(z2, z1)dz
(ε1)
t dz

(ε2)
t′ .

Remark 4.1. When there are more than two terms involved, we would
have to sum over fixed–point free permutations (fixed point free since
there is no diagonal term) when taking the determinant to find E((α1−
α1) . . . (αn−αn) and we would in fact get det(Fεi,εj

(zi, zj)) in the inte-
grand.
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