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Abstract: This is a truncated version of the paper Degenerate diffusion with a drift potential:

a viscosity solutions approach, co–authored with I. C. Kim. The purpose of this version is to

withdraw the claim of quantitative rate of convergence of the free boundary on the part of

H. K. Lei. The difference from the previous version lies in Section 3 where 1) the quantita-

tive version of the convergence of the free boundary statement has been removed and 2) the

more basic version of some convergence of the free boundary given uniform convergence of the

function has been rewritten.

We introduce a notion of viscosity solution for a nonlinear degenerate diffusion equation with

a drift potential. We show that our notion of solution coincides with that of the weak solu-

tion defined via integration by parts. As an application of the viscosity solutions theory, we

show that in the case of a strictly convex potential, the free boundary uniformly converges to

equilibrium as t grows.

1 Introduction

Consider a C2–potential Φ(x) : Rn → R, and consider a nonnegative, continuous function
ρ0(x) : Rn → R which has compact support Ω0. In this paper we study the porous medium
equation with a drift

ρt = ∆(ρm) +∇ · (ρ∇Φ), (1.1)

for m > 1, with initial data ρ0(x). It will be convenient to change from the density variable
to the pressure variable

u =
m

m− 1
ρm−1, u0 =

m

m− 1
ρm−1

0 , (1.2)

so that the equation becomes

(PME–D) ut = (m− 1)u∆u+ |∇u|2 +∇u · ∇Φ + (m− 1)u∆Φ
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(for more on the density to pressure transform see e.g., the discussions in [3]). We consider
continuous and nonnegative solutions in the space–time domain Q = Rn × (0, T ) for some
T > 0, with prescribed initial conditions u(x, 0) = u0(x) ∈ C(Rn).

When Φ ≡ 0, (PME–D) is the widely-studied Porous Medium Equation (PME): We
refer to the book [14] for references. Moreover, when V = |x|2, (PME–D) is obtained as a
re-scaled version of the (PME) via the transform

θ(η, τ) := t−αu(x, t), η = xt−β, τ = ln t

(here u solves (PME)). This suggests that the local behavior of (PME–D) is similar to that
of (PME), with perturbations due to the inhomogeneity of Φ. We will illustrate this fact in
the construction of various barriers in Section 2.

The weak solution theory for (PME–D) in the case of bounded domains has been de-
veloped in [2] and [6]. Also, in [7], existence and uniqueness of solutions are established
for the full space case under reasonable assumptions (either the initial data is compactly
supported or the potential has less than quadratic growth at infinity).

Further, uniform convergence to equilibrium for (PME–D) has also been shown in [2] (see
Theorem 3.1). In [8], the connection between the (PME) and the nonlinear Fokker–Planck
equation is established, which facilitates the use of the entropy method to derive an explicit
L1 rate of convergence. In [9], an extensive study is made of a general form of the nonlinear
Fokker–Planck equation, i.e., ρt = ∇ · (∇ϕ(ρ) + ρ∇V ) with suitable assumptions on ϕ and
exponential L1 rate of convergence is obtained. (PME–D) falls under the framework of [9],
and in fact it is the case that almost all of our results would also go through for a general
equation of this form, but for ease of exposition we will restrict attention to (PME–D).

We introduce a notion of viscosity solution for the free boundary problem associated
with this equation, which we will show to be equivalent to the usual notion of weak solutions
– see [5] for the general theory of viscosity solutions. Note that, formally, the free boundary

Γ(u) := ∂{u > 0}

moves with the outward normal velocity

V =
ut
|∇u|

= (∇u+∇Φ) · ∇u
|∇u|

= |∇u|+∇Φ · ∇u
|∇u|

,

where the first equality is due to the fact that u = 0 on Γ(u). In this regard we closely
follow the framework and arguments set out in [4] (see also [10] and [3]), where the viscosity
concept is introduced and studied for the Porous Medium Equation. We point out especially
that [3] extends the result of [4] to the case where the diffusion term is multiplied by more
general nonlinearities; our focus, however, is on the added drift term, which introduces
spatial inhomogeneities. The key utility of the viscosity concept here is that we will be able
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to describe the pointwise behavior of the free boundary evolution by maximum principle
arguments with local barriers. As an application, we are able to extend the results of [2]
and [9] to a stronger notion of free boundary convergence. We summarize our main result
in the following:

Main Theorem. There exists a viscosity solution u of (PME–D) in the sense of Definition
2.4 and

(a) u is unique and coincides with the weak solution studied in [2] and [9].

(b) Suppose Φ is strictly convex, then we have convergence of the free boundary: Γ(u(·, t))
uniformly converges to Γ(u∞), where u∞ is the unique equilibrium solution to which
u tends as t→∞ (see Theorem 3.1).

We will separately (re)state and prove items (a) and (b) in the above as Theorem 2.24
and Theorem 3.2.

Remark.

◦ The free boundary convergence may not hold if |∇Φ| vanishes at some points, even
though the uniform convergence of the solution still holds. This is the reason for
assuming Φ to be strictly convex.

◦ In the case of Φ(x) = |x|2 (that is for the renormalized (PME)) Lee and Vazquez [12]
showed that the interface becomes convex in finite time. It is unknown whether such
results hold for general convex potentials: we shall investigate this in an upcoming
work.

2 Viscosity Solution

In this section we introduce the appropriate notion of viscosity solution for (PME–D) and
show that it is equivalent to the usual notion of weak solution. Our definition descends from
those in [4] and [10]. For more details we also refer the reader to the definitions, discussions
and results in [3].

2.1 Definition and Basic Properties

Let Q := Rn× (0,∞). For a nonnegative function u(x, t) in Q, we define the positive phase

Ω(u) = {u > 0}, Ωt(u) := {x : u(x, t) > 0}
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and the free boundary
Γ(u) = ∂Ω(u), Γt(u) := ∂Ωt(u).

As in [4], to describe the free boundary behavior using comparison arguments we need an
appropriate class of test functions to handle the degeneracy of (PME–D).

Let Σ be a smooth, cylinder–like domain in Rn × [0,∞), i.e.,

Σ =
⋃

t1≤t≤t2

Σ(t)× {t}, where Σ(t) is a smooth domain in Rn. (2.1)

Definition 2.1. A nonnegative function u ∈ C2,1({u > 0} ∩Σ) is a classical free boundary
subsolution in Σ if

◦ u satisfies (PME–D) with ≤ replacing = in the classical sense in {u > 0} ∩ Σ;

◦ |Du| > 0 on Γ(u) ∩ Σ with outward normal velocity

V ≤ |∇u|+∇Φ · ∇u
|∇u|

on Γ(u),

or, equivalently,
ut ≤ |∇u|2 +∇Φ · ∇u on Γ(u).

We define a classical free boundary supersolution by replacing ≤ with ≥.

Finally, u is a classical free boundary solution if it is both a sub– and supersolution.

Before proceeding further it is convenient to introduce some auxiliary definitions.

Definition 2.2. Let ϕ be a continuous, nonnegative function. Now if ψ is another such
function, then we say that ϕ touches ψ from above at (x0, t0) in Σ if ϕ − ψ has a local
minimum zero at (x0, t0) in Σ ∩ {t ≤ t0}. We have a similar definition for ϕ touching ψ
from below.

Definition 2.3 (Strictly separated data). For two nonnegative functions u, v : Rn → R,
we write u0 ≺ v0 if the following holds: supp(u0) is compact and supp(u0) ⊂ Int(supp(v0))
and inside supp(u0), u0(x) < v0(x).

We note that e.g., due to the maximum principle, a classical free boundary subsolution
that lies below a classical free–boundary supersolution at time t1 ≥ 0 cannot cross the
supersolution from below at a later time t2 > t1. This observation leads to a notion of
viscosity solution which takes into account the free boundary:

Definition 2.4. Let u be a continuous, nonnegative function in Q.
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◦ u is a viscosity subsolution of (PME–D) if, for any given smooth domain Σ given in
(2.1), for every ϕ ∈ C2,1(Σ) that touches u from above at the point (x0, t0), we have

ϕt ≤ (m− 1)ϕ∆ϕ+ |∇ϕ|2 +∇ϕ · ∇Φ + (m− 1)ϕ∆Φ. (2.2)

◦ u is a viscosity supersolution of (PME–D) if, for any given smooth domain Σ as given
in (2.1),
(i) for every ϕ ∈ C2,1(Σ) that touches u from below at the point (x0, t0) ∈ Ω(u) ∩ Σ,
we have

ϕt ≥ (m− 1)ϕ∆ϕ+ |∇ϕ|2 +∇ϕ · ∇Φ + (m− 1)ϕ∆Φ. (2.3)

(ii) for every classical free–boundary subsolution ϕ in Σ, the following is true: If
ϕ ≺ u on the parabolic boundary of Σ, then ϕ ≤ u in Σ. That is, every classical
free–boundary subsolution that lies below u at a time t1 ≥ 0 cannot cross u at a later
time t2 > t1.

◦ u is a viscosity solution of (PME–D) with initial data u0 if u is both a super– and
subsolution and u uniformly converges to u0 as t→ 0.

Remark 2.5. In general one can define viscosity sub– and supersolutions respectively as
upper– and lower semicontinuous functions. Such a definition turns out to be useful when
one cannot verify continuity of solutions obtained via various limits. This problem does not
arise in our investigation here thanks to [2], and therefore our definition assumes continuity
of solutions.

It is fairly straightforward to verify that a classical free boundary sub– (super)solution
is also a viscosity sub– (super)solution.

Lemma 2.6. If w is a classical free boundary sub– (super) solution to (PME–D), then w
is also a viscosity sub– (super) solution.

Proof. We will be brief: The subsolution case presents no difficulty since if contact with
some ϕ ∈ C2,1(Σ) occurs in Ω(w) then we use the fact that w is classical there, whereas
no contact can occur on the free boundary unless |∇w| = 0, in which case the differential
inequality is satisfied since then ϕ = |∇ϕ| = 0 and ϕt ≤ 0.

If w is a classical free boundary supersolution, then (i) in Definition 2.4 follows as before.
To see (ii), let us note that if ϕ is a classical free boundary subsolution which crosses w, then
since the free boundary is C2, Hopf’s Lemma implies that at the touching point |∇ϕ| < |∇w|
(see e.g., [13]). On the other hand, since ϕ started below w, at the touching point we must
have vn(ϕ) ≥ vn(w), which leads to a contradiction since it is also the case that we have
∇w
|∇w| = ∇ϕ

|∇ϕ| .
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Next we have the following stability result.

Lemma 2.7. Let uε be a smooth solution of (PME–D) with initial data u0 + ε and let u be
its uniform limit. Then u is a viscosity solution of (PME–D) with initial data u0.

Proof. Let Σ be as given in (2.1) and let ϕ ∈ C2,1(Σ).

1. Let us first show that u is a subsolution. First suppose that ϕ touches u from
above at the point (x0, t0). We may assume that u− ϕ has a strict maximum at (x0, t0) in
Ω(u) ∩ Σ ∩ {t ≤ t0} by replacing ϕ by

ϕ̃(x, t) := ϕ(x, t) + σ((x− x0)4 − (t− t0)2), σ > 0

if necessary. By uniform convergence there exists a sequence (xε, tε) converging to (x0, t0)
such that uε − ϕ has a local maximum at (xε, tε). Now if we we let

ϕ̃(x, t) := ϕ(x, t)− ϕ(xε, tε) + uε(xε, tε)

Then uε− ϕ̃ has a local maximum at (xε, tε) with (uε− ϕ̃)(xε, tε) = 0. We can now conclude
by taking the limit of the viscosity subsolution property of uε.

2. Next we show that u is a supersolution. Let ϕ be a classical free–boundary subsolution
such that ϕ(x, t1) ≺ u(x, t1). Since the uε’s are strictly ordered, u < uε and hence ϕ(x, t1) ≺
u(x, t1) < uε(x, t1). Now suppose ϕ touches uε at some point (x2, t2), then ϕ(x2, t2) > 0
since uε is positive, so by continuity, there is a parabolic neighborhood of (x2, t2) in which
both functions are classical and positive. By the Strong Maximum Principle, the touching
cannot have occurred at (x2, t2), a contradiction. We conclude that ϕ < uε so that in the
limit ϕ ≤ uε.

An immediate consequence of the above lemma is that weak solutions are viscosity
solutions (see Corollary 2.12). We shall introduce the precise notion of weak solutions in
the next subsection, and summarize some results from [2].

2.2 Weak Solutions

To be consistent with the setup in both [2] and [9], let us return to the density variable and
consider the solution of (1.1) in a bounded domain Ω with Neumann boundary condition:

(N)


ρt = ∆ρm +∇ · (ρ∇Φ) in Ω×R+,

∂ρm/∂ν + ρ (∂Φ/∂ν) = 0 on ∂Ω×R+,

ρ(x, 0) = ρ0(x) in Ω.
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We will see shortly that we need not worry about the fact that we are on a bounded domain,
but for now we will let Q = Ω×R+ and Qt = Ω× (0, t]. As in [2], we make the following
definition:

Definition 2.8. We say ρ : [0,∞)→ L1(Ω) is a weak solution of (N) if

(i) ρ ∈ C([0, t];L1(Ω)) ∩ L∞(Qt) for all t ∈ (0,∞);

(ii) for all test functions ϕ ∈ C2,1(Q) such that ϕ ≥ 0 in Q and ∂ϕ/∂ν = 0 on ∂Ω×R+,
we have ∫

Ω
ρ(t)ϕ(t) =

∫
Ω
ρ(0)ϕ(0) +

∫ ∫
Qt

(ρϕt + ρm∆ϕ− ρ∇Φ · ∇ϕ)

We also define a weak subsolution (respectively supersolution) by (i) and (ii) with equality
replaced by ≤ (respectively ≥).

From [2] we have existence, regularity, uniqueness and comparison principle for weak
solutions:

Theorem 2.9 (From [2]). Under the assumption that Φ is C2 in Ω̄:

(a) the problem (N) has a unique solution;

(b) the solution is uniformly bounded in Q and is continuous in any set Ω× [0, T ];

(c) suppose ρ(t) is a subsolution and ρ(t) is a supersolution, then if ρ
0
≤ ρ0 in Ω, then

ρ(t) ≤ ρ(t) in Ω for t ≥ 0.

The existence of solutions is obtained as the uniform limit of solutions to uniformly
parabolic problems (equicontinuity is obtained from [6]). For our purposes, a very simple
approximation basically suffices and we summarize the relevant result in the following:

Lemma 2.10 (From [2]). Let uε be a solution of (N) with initial data uε0 = u0 + ε, then
uε is equicontinuous and there exists a subsequence which uniformly converge to u which is
the unique weak solution to (N) with initial data u0.

While a priori our viscosity solution is defined in all of Rn, since (formally at least)
solutions of (PME–D) should have finite speed of propagation, the boundary conditions
should be inconsequential if we take Ω sufficiently large. (Later we will also establish finite
propagation for viscosity solutions – see Corollary 2.16.) Control on the speed of expansion
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of the support can be done via comparison with any (weak) supersolution. In particular,
when Φ is convex, we can use the stationary profiles of the form Ψ(x) = (C − Φ)+ with
sufficiently large C as a supersolution (see Theorem 3.1).

Remark 2.11. Alternatively (and perhaps this is a cleaner line of reasoning), we can
directly use the result of [7] on existence and uniqueness of solutions in all of Rn, which
implies in particular that the results of [9] also apply in that setting.

Combining Lemma 2.7 with Lemma 2.10 and the uniqueness statement in Theorem 2.9,
we obtain:

Corollary 2.12. Any weak solution is also a viscosity solution.

We will eventually establish uniqueness of viscosity solutions via maximum–principle
type arguments, which culminates in the identification of the two notions of solution.

2.3 Construction of test functions

In this subsection we collect some test functions, i.e., (classical free boundary) sub– (super)
solutions, to (PME–D) which will be useful for comparison purposes. In the first couple
of lemmas (Lemmas 2.15 and 2.18) the idea is to control the Φ dependence via Taylor
expansion in a small neighborhood of a point, so that we can appropriately perturb the test
functions for (PME) constructed in [3] and [4] for our purposes.

Let α > 0 be small. We will first explain how locally the (PME–D) can be viewed as a
perturbation of (PME). The starting point is to observe that if u is a solution of (PME–D)
in the parabolic cylinder

Qα(x0, t0) = B(x0, α)× [t0, t0 + α].

By Taylor’s theorem, u satisfies an equation

ut = (m− 1)u∆u+ |∇u|2 +~b · ∇u+ (m− 1)u∆Φ +O(α)[D2Φ]∇u+O(α2),

where
~b = ∇Φ(x0, t0)

and [D2Φ] denotes the relevant term in Taylor’s expansion for ∇Φ.

On the other hand, if we use hyperbolic scaling and define

v(x, t) = α−1u(α(x− x0), α(t− t0)),

then v satisfies

vt = (m− 1)v∆v + |∇v|2 +∇v · ∇Φ + α(m− 1)v∆Φ
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in the parabolic cylinder
Q1(0, 0) = B(0, 1)× [0, 1].

Combining this with the Taylor expansion, we see that v satisfies

vt = (m− 1)v∆v + |∇v|2 +~b · ∇u+ α(m− 1)v∆Φ +O(α)[D2Φ]∇v +O(α2)

:= (m− 1)v∆v + |∇v|2 +~b · ∇u+R(x0, v).

From Taylor’s theorem, we see that

|R(x0, v)| . α‖Φ‖C2(|v|+ |∇v|). (2.4)

Finally, we define
w(x, t) = v(x−~bt, t).

Then w satisfies
wt = (m− 1)w∆w + |∇w|2 +R(x0, w), (2.5)

which is indeed the (PME) with an O(α) perturbation in the unit scale parabolic cylinder

Q1(~bt, 0) = B(~bt, 1)× [0, 1].

To construct test functions for (PME–D) from perturbations of solutions of (PME) we
shall have to reverse the order of operations: We will construct super– (sub)solutions of
(2.5) by perturbing corresponding super– (sub)solutions of the (PME) at the unit scale and
then we will use hyperbolic scaling to arrive at a rescaled (and translated) local super–
(sub)solution for the (PME–D). Let us note for future reference that

u(x, t) = αw
(
α−1(x+~bt), α−1t

)
.

The next proposition gives one way to perform the necessary perturbation on solutions
of (PME) to arrive at (2.5).

Proposition 2.13. Let u(x, t) be a viscosity subsolution of (PME) in B1+α(0) × [−1, 1].
Then for 0 < α < 1,

u1(x, t) := e−αt sup
y∈Bα−αt(x)

u(y, t)

is a subsolution of

(PME–sub) (u1)t = (m− 1)u1∆u1 + |∇u1|2 − α|∇u1| − αu1

in B1(0) × [−1, 1]. Similarly, if u(x, t) is a viscosity supersolution of (PME) in B1(0) ×
[−1, 1], then for 0 < α < 1,

u2(x, t) := eαt inf
y∈Bα−αt(x)

u(y, t)
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is a supersolution of

(PME–super) (u2)t = (m− 1)u2∆u2 + |∇u2|2 + α|∇u2|+ αu2

in B1(0)× [−1, 1].

Proof. We only show the supersolution part. Let u2 be as given above. Suppose then that
ϕ is classical and touches u2 from below at some point (x0, t0). We first note that there
exists x1 ∈ Bα−αt(x0) such that u2(x0, t0) = eαt1u(x1, t0).

Next for any unit vector b̂, let us consider

ϕ̃(x, t) = e−αtϕ(x− (x1 − x0)− αb̂(t− t0), t).

Then we note that 1) ϕ̃(x1, t0) = e−αt0ϕ(x0, t0) and so (u − ϕ̃)(x1, t0) = 0 and 2) by the
definition of u2 as an infimum and by continuity of ϕ, in a small parabolic neighborhood of
(x0, t0), it is the case that u− ϕ̃ ≥ u2− ϕ̃ ≥ 0; we therefore conclude that ϕ̃ touches u from
below at (x1, t0) and so we have,

[ϕ∆ϕ+ |∇ϕ|2](x0, t0) = eαt0 [ϕ̃∆ϕ̃+ |∇ϕ̃|2](x1, t0)

≤ eαt0ϕ̃t(x1, t0)

= [ϕt − αϕ− αb̂ · ∇ϕ](x0, t0).

Now the desired inequality is achieved by setting b̂ = ∇ϕ
|∇ϕ|(x0, t0).

Indeed the above calculation shows that if u is a viscosity supersolution of (PME), then
u2 should be a viscosity supersolution of (PME–super): If a classical free boundary subsolu-
tion ϕ of (PME–super) crosses u2 from below, then the corresponding ϕ̃ is a subsolution of
(PME) and crosses u, yielding a contradiction (there is no distinction between the interior
and boundary cases).

We will use the spherically symmetric supersolutions for (PME) from [4]:

Lemma 2.14. Consider the function

H(x, t;A,ω) = A(|x|+ ωt−B)+

with R/2 < B < R. Then u is a classical free boundary supersolution of (PME) in the
domain {|x| ≤ R} × [ω−1(B −R), 0] if

ω

A
> 1 + 2(m− 1)(n− 1)

R−B
R

.

10



Proposition 2.13 and Lemma 2.14 yield the following:

Corollary 2.15. Let us fix x0 ∈ Rn and let H be given as in Lemma 2.14. Then the inf
convolution of H, given as

H(x, t;α) = eαt inf
y∈Bα−αt(x)

H(y, t)

is a classical (free boundary) supersolution of (PME–super). Consequently, there exists
C = C0 which only depends on the C2-norm of Φ in B1(x0) such that

H̃(x, t) := αH(α−1(x− x0 +~b(t− t0)), α−1(t− t0);Cα)

is a classical (free boundary) supersolution of (PME–D) in Qα := Bα(x0)× [t0 − α, t0].

Proof. By Lemma 2.6 and Proposition 2.13, H is a viscosity supersolution of (PME–super)
and hence adjusting α by multiplying by a suitable constant to take into account the C2–
norm of Φ, we obtain a viscosity supersolution of (2.5) from which we obtain a supersolution
of (PME–D) in Qα.

To finish it is sufficient to show that H̃ has the required regularity to be a classical free
boundary supersolution. For this, note that for simplicity we have only taken the supremum
over space and the reader can readily check that in this case the infimum for H(x, t;α) is
achieved at the point y which minimizes |y| subject to the constraint that |y− x| = α−αt,
and thus an explicit expression is possible for H.

By comparison with these supersolutions, we immediately obtain

Corollary 2.16. Any viscosity solution has finite speed of propagation and is bounded in
a big ball in any local time interval. Further, if Φ is convex, then via comparison with the
stationary solutions of the form given in Theorem 3.1, the above holds globally in time.

For subsolutions we will make use of the Barenblatt profiles (see e.g., [4] and [14]).

Lemma 2.17. [Barenblatt] Let B(x, t; τ, C) be the family of functions

B(x, t; τ, C) =
(C(t+ τ)2λ −K|x|2)+

(t+ τ)

with constants λ,K,C, τ > 0 such that

λ = ((m− 1)d+ 2)−1, 2K = λ.

Then B(x, t; τ, C) is a classical (free boundary) solution of (PME).
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Using Proposition 2.13 (see also the proof of Corollary 2.15) once again, we obtain the
following:

Corollary 2.18. Let us fix some (x0, t0) and let B be a Barenblatt function. Then there
exists a constant C which only depends on the C2-norm of Φ in B1(x0) such that

B̃(x, t) = αe−Cα(t−t0) sup
y∈BCα−C(t−t0)(x)

B(α−1(y − x0 + α~b(t− t0)), α−1(t− t0))

is a classical (free boundary) subsolution of (PME–D) in Qα := Bα(x0)× [t0 − α, t0].

Remark 2.19. The reason for taking the hyperbolic scaling is because we will have occasion
to require rather fine control on the boundary velocity (see Lemma 2.23) and this is the
scaling which preserves the velocity – in contrast to the parabolic scaling, which dramatically
reduces the effect of the drift Φ in the bulk (the positivity set), but unfortunately at the cost
of severely disrupting the boundary velocity.

To establish the Comparison Principle, we will need the following weak analogue of (ii)
in the definition of viscosity supersolutions for subsolutions, the proof of which utilizes an
approximation lemma from [3].

Lemma 2.20. Let u be a viscosity subsolution of (PME–D), and let ϕ be a classical free
boundary supersolution from Lemma 2.15 which lies above u at some time t0. Then ϕ
cannot cross u from above at a later time t > t0.

Proof. Let ϕ and u be as described in the statement, and suppose that ϕ touches u from
above at some point (x0, t0). From Lemma 2.15, we have that ϕ is given as the inf convo-
lution of some spherical traveling waves from Lemma 2.14, which we denote by ψ. Further,
let us suppose the infimum is achieve at (x1, t1) so that 1) ϕ(x0, t0) = ψ(x1, t1) and 2) by
the definition of ϕ as an inf convolution, the translated function

ψ̃(x, t) = ψ(x+ (x1 − x0), t+ (t1 − t0))

also touches u from above at the point (x0, t0). From Lemma 4.4 in [3], we know that
ψ can be given as the monotone limit of classical positive supersolutions, and hence the
same is true of ψ̃: I.e., there exsits ψε ↘ ψ̃, with ψε > 0 classical. But since u cannot
touch ψε by the Strong Maximum Principle, we obtain in the limit that u ≤ ψ̃, which is a
contradiction.

2.4 Comparison Principle and Identification with Weak Solution

Here the outline of the proof closely follows that of the corresponding result for (PME)
(Theorem 2.1 in [4]): We will give an abridged version of the proof, pointing out main steps
and modifications for our problem. Here we let Q = Rn × R+.
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Theorem 2.21. [Comparison Principle] If u is a viscosity subsolution and v is a viscosity
supersolution in the sense of Definition 2.4 with strictly separated initial data, u0 ≺ v0, then
u(x, t) ≤ v(x, t) for every (x, t) ∈ Q.

Proof. 1) [Sup and Inf Functions] For given δ > 0 and r > 0 small with r � δ we introduce
the regularized functions

W (x, t) = inf
Br−δt(x,t)

v(y, τ)

and
Z(x, t) = sup

Br(x,t)

u(y, τ)

First note that W and Z preserve properties of v and u:

◦ W is a supersolution and Z is a subsolution;

◦ Z(·, r) ≺W (·, r) for r sufficiently small.

For a proof of the first item see [3], Lemma 7.1 or the proof of Lemma 2.15. The proof of
the second item relies on the fact that

◦ The support of viscosity subsolutions and supersolutions evolve in a continuous way.
Here continuity is understood as continuity in the Hausdorff distance (in time) of the
positivity set.

The proof of this can be done by comparison with the supersolutions (respectively subsolu-
tions) constructed in Corollary 2.15 (respectively Corollary 2.18). We omit the details since
with replacement of barriers it is no different from the proof of Proposition 6.2 in [3].

Thus if we can prove that W stays above Z for all choices of r and δ (sufficiently small),
then we may take δ → 0 and then r → 0 to recover the conclusion for u and v. First
let us note that due to the Strong Maximum Principle, W cannot touch Z from above,
and therefore we are reduced to the analysis of a first contact point of W and Z at some
P0 = (A, t0).

The key usefulness of Z and W lies in the fact that they enjoy interior/exterior ball
properties:

◦ The positivity set of Z has the interior ball property with radius r at every point of its
boundary and at the points of the boundary of the support of u where these balls are
centered we have an exterior ball;
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Figure 1: The geometry at the contact point

◦ The positivity set of W has the exterior ball property with radius less than r−δt (since
in this case we really have an exterior ellipsoid in space–time) and at the points of the
boundary of the support of v where these balls are centered we have an interior ball.

For detailed proofs of these statements we again refer the reader to [3].

2) [The Contact Point] The first contact point P0 = (x0, t0) is located at the free
boundary of both functions. Therefore by the definitions of Z and W , there is a point
P1 = (x1, t1) on the free boundary of u located at distance r from P0 and there is another
point P2 = (x2, t2) on the free boundary of v at distance r0 = r − δt0 from P0. Let us
also denote by HZ (respectively HW ) the tangent hyperplane to the free boundary of Z
(respectively W ) at P0. (see Figure 1)

Lemma 2.22. Neither HZ nor HW is horizontal. In particular, one can denote the space-
time normal vector to HZ , in the direction of P1 − P0, as (en,m) ∈ Rn × R where |en| = 1
and −∞ < m <∞.

Proof. It is enough to show that t1 > t0−r (i.e., Γ(Z) cannot propagate with infinite speed)
and t2 < t0 + r (i.e., Γ(W ) cannot propagate with negative infinite speed). The desired
conclusion then follows by the ordering of Z and W .
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Figure 2: Infinite, negative speed

We first show that t2 < t0 + r. Otherwise HW is horizontal and after translation we
have P0 = (0,−r) and P2 = (0, 0). Moreover Ω(v) has an interior ball at P2 with horizontal
tangency with radius 0 < r′ < r. Now in any parabolic cylinder

Cη = {(x, t) : |x| ≤ η,−η2 ≤ t ≤ 0}

with bottom edge contained in the interior ball (which can be achieved by taking η ≤ r′),
we have by continuity that v ≥M > 0 on that edge. (see Figure 2)

On the lateral boundary of Cη it may be the case that v = 0, so we will have to compare
with a subsolution with support strictly contained in −η < |x| < η at time t = −η2 and
still contains 0 in its support at time t = 0, which rigorously implies that v cannot contract
sufficiently fast for (0, 0) to be a free boundary point. The necessary subsolution can be
constructed as the one in Lemma 2.18, adjusted for the parabolic scaling.

The case t1 > t0− r follows mutatis mutantis from the arguments in [4] and [3] (see [4],
Lemma 4.2 or [3], Lemma 8.2) with the barrier in Lemma 2.15 replacing the barriers used
therein.

3) [Non–tangential Estimate] The next lemma states that the normal velocity V of Γ(Z)
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at (x0, t0) satisfies, in the viscosity sense,

V(x0,t0) ≤
(
|∇Z|+∇Φ(x0) · ∇Z

|∇Z|

)
(x0, t0).

Lemma 2.23. Let xn := x · en, and consider a non-tangential cone

K := {x : xn ≥ k|x| with k > 0}.

Then we have

lim
x∈K, x→0

Z(x0 + x, t0)

xn
≥ m−∇Φ(x0) · en.

Proof. The argument is parallel to the proof of Lemma 4.3 in [4]; the only difference for
us is taking into account the change of reference frame introduced by the drift given by Φ.
This is ensured by the local nature of the construction of our barrier in Lemma 2.15, which
replaces the corresponding barriers used in [4].

4) [Conclusion] Due to Lemma 2.23, we may place a small subsolution ϕ from Lemma
2.18 below Z at P0 with speed close to m (again see Remark 2.19, which assures us that
our subsolutions are constructed so that this is possible) such that it crosses anything with
speed m′ < m. Since ϕ is also below W and hence v (after a small translation), v must
expand by at least m′, but then Γ(W ) has speed m′+ δ > m at P0, yielding a contradiction
to the fact that Z touched W from below at P0.

We can now establish uniqueness of viscosity solutions:

Theorem 2.24. The problem (PME–D) admits a unique solution in the class of viscosity
solutions as defined in Definition 2.4 for continuous and nonnegative initial data. This
solution coincides with the continuous weak solution.

Proof. The existence of a continuous weak solution can be provided as the uniform limit of
classical solutions with initial data u0,ε = u0 + ε, and by Lemma 2.7, such a limit, which
we will denote by U , is also a continuous viscosity solution. Further, by comparison with
u0,ε and taking a limit, it is clear that such a limit U is also a maximal viscosity solution.

Uniqueness would follow if we can show that any other viscosity solution u also cannot
be smaller than U . For this purpose, consider un(x, t) with initial data un(x, 0) := (u0− 1

n)+.
Now consider positive uεnn such that |uεnn − un| < 1

n in Rn × [0, T ]. It follows from Lemma
2.10 that uεnn uniformly converges to U2(x, t), which is then a continuous weak solution of
(PME–D). Therefore, by uniqueness of weak solutions, U2 is equal to U . On the other hand
by Theorem 2.21 un ≺ u and thus U = U2 ≤ u. Hence we conclude.
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Using Theorem 2.21 and Theorem 2.24, we can in fact prove a stronger comparison
theorem for viscosity solutions (see [3], Theorem 10.2):

Theorem 2.25. Let u1 and u2 be respectively a viscosity subsolution and a viscosity super-
solution of (PME–D) with initial data u0,1 and u0,2 such that u0,1 ≤ u0,2. Then u1(x, t) ≤
u2(x, t).

We can now strength Lemma 2.20:

Lemma 2.26. Let u be a viscosity subsolution of (PME–D), and let ϕ be a classical free
boundary supersolution which lies above u at some time t0. Then ϕ cannot cross u from
above at a later time t > t0.

Proof. Let us first replace ϕ by a viscosity solution of (PME–D) with the same initial data
which we denote v. Since ϕ is a viscosity supersolution by Lemma 2.6, we have that ϕ ≥ v
by Theorem 2.25. Finally, u ≤ v by Theorem 2.21.

3 Convergence to Equilibrium

We begin by discussing the set of equilibrium solutions to (PME–D) and reviewing some
known results. Since by Theorem 2.24, the unique viscosity solution coincides with the
continuous weak solution, we may invoke the results of [2] which are stated in terms of
weak solutions.

The set of equilibrium solutions and uniform convergence of solutions to the equilibrium
are established in [2]. We state below a restricted version of the result for our purposes.

Theorem 3.1. [Theorem 5.1, [2]] Functions of the form (C −Φ)+ with C ∈ R are equilib-
rium solutions for (PME–D), and given u0, there exists a unique C∞ > 0 such that u(x, t)
uniformly converges to (C∞ − Φ)+ as t→∞.

It is fairly immediate that the set {(C−Φ)+, C ∈ R} is contained in the set of equilibrium
solutions; the converse containment and the convergence statement are established based on
a L1–contraction result in [2]. The uniqueness of the equilibrium solution comes from the
fact that due to its divergence form, the density function ρ(·, t) given in (1.2) preserves its
L1–norm over time. It follows that the equilibrium solution is determined by the condition∫

[u0]1/(m−1)(x)dx =

∫
[u∞]1/(m−1)(x)dx.

We can now state our free boundary convergence theorem.
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Theorem 3.2. Let u∞(x) be the unique equilibrium solution given by Theorem 3.1. Then
Γt(u) uniformly converges to Γ(u∞) in the Hausdorff distance, as t→∞.

Proof. It will be convenient to look at the sublevel sets

Φ{≤r} := {x : Φ(x) ≤ r}.

We note that since Φ is strictly convex, the sublevel sets with r ∈ R start from a point
(where the global minimum of Φ is achieved) and exhaust Rn (since |∇Φ| > 0 except at the
minimum). Let ε > 0. Invoking continuity of Φ if necessary, it is sufficient to show that
there exists a T > 0 such that

Γt(u) ⊂ Φ{≤C∞+ε} \ Φ{≤C∞−ε}

for all t ≥ T .

Γt(u) ⊂ [Φ{≤C∞−ε}]
c: This is the statement that the free boundary converges from the

inside and is immediate from the uniform convergence to u∞. Indeed, uniform convergence
implies that e.g., there exists T > 0 such that u(x, t) ≥ ε/2 for all (x, t) ∈ Φ{≤C∞−ε}×[T,∞);
it necessarily follows then that Γt(u) lies outside Φ{≤C∞−ε} since otherwise by continuity
we can find a sufficiently small ball inside Φ{≤C∞−ε} where u(x, t) < ε/2, contradicting the
definition of T .

Γt(u) ⊂ Φ{≤C∞+ε}: In principle this should follow from a “dual” sort of argument, i.e.,
some statement to the effect that if y ∈ Γt(u), then there exists some sufficiently small
δ > 0 such that u(·, t) is “large” in Bδ(y). (E.g., an analogue of Corollary 2.2 in [1] for
(PME–D) would suffice for us.) We will instead directly make a comparison argument to
show that the potential appropriately “pulls” the free boundary inwards, taking advantage
of the explicit form of the supersolutions constructed in Corollary 2.15.

• The uniform convergence of u(·, t) to (C∞ − Φ)+ means that there exists some con-
tinuous decreasing function η(t)→ 0 such that

u(x, t) ≤ η(t), for x /∈ Φ{≤C∞}.

Let us define
T ∗ = sup

{
t : Ωt ⊂ Φ≤C∞+Kη̃(t)

}
, (3.1)

where η̃ is a smoothed version of η so that it is differentiable (obtained e.g., by
convolving with a small smooth bump function) and K > 0 is some (large) constant.

Let us first make a heuristic, non–rigorous argument to the effect that T ∗ =∞. Let

x∗ ∈ ∂Φ{≤C∞+r(T ∗)} ∩ ΓT ∗(u);
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such an x∗ exists by the minimality of r(T ∗), and morally it represents the worst case
scenario: x∗ is the furthest away from where it should be among all points x ∈ ΓT ∗(u). We
note that ∇Φ(x∗) and ∇u(x∗) point in the outward and inward normal directions of ΓT ∗(u),
respectively, and hence have opposite sign. We conclude then that the normal velocity of
the boundary at x∗ is

V (x∗) = |∇u(x∗)|+∇Φ · ∇u(x∗)

|∇u(x∗)|
= |∇u(x∗)| − |∇Φ(x∗)|.

If we assume for the moment that |∇u(x∗)| ≈ u(x∗) ≤ η(T ∗), and that |∇Φ(x∗)| ≥ ∆, then
we see that

V (x∗) . η(T ∗)−∆.

Now if it can be arranged so that

η(T ∗)−∆ < η̃′(t),

then we can conclude that the most outlying point of ΓT ∗ is moving inwards at a faster
rate than indicated by the rate defining T ∗, thus yielding a moral contradiction to the
maximality of T ∗.

A rigorous version of the argument will be established by invoking Lemma 2.26 to
compare u with a (classical free boundary) supersolution constructed in Corollary 2.15,
and thus all considerations regarding the size of u, ∇u and the boundary velocity will be
transferred to the relevant supersolution. These supersolutions are rescaled and translated
versions of spherically symmetric supersolutions of (PME) supported in annuli. We remark
that since we are not establishing a precise quantitative rate, the precise form given in (3.1)
is only for convenience: η(t) sets a convenient small scale.

• We will now take x0 ∈ ∂Φ{≤C∞+Kη̃(T ∗)} to be arbitrary. Let us first describe the geo-
metric setting in which we will make our comparison argument. Since ∂Φ≤C∞+Kη̃(T ∗)

is convex, there is an exterior ball at x0 which is centered at some x1, which we denote
Bα(x1). The comparison argument takes place in the parabolic cylinder

Σ = [Bα(x1) ∩Bα′(x0)]× [T ∗, T ∗ + τ ].

(See Figure 3.) Here α′ is sufficiently small so that u(x, T ∗) . η(T ∗) in Bα′(x0) and α
is correspondingly small, and, finally, τ is sufficiently small in a way to be computed
shortly.

• By translation, we will assume without loss of generality that the relevant barriers
are centered at (0, 0) (of course, really, t0 = T ∗, and we shall recover T ∗ when it is
relevant) and we will denote by e.g., Φ = Φ(x0), with x0 as before and taken to be
the point at which the relevant Taylor expansion is performed. Now returning to the
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Figure 3: The construction of barriers. Here ∂Da = ∂Φ{≤C∞+Kη̃(T ∗)}.
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proof of Corollary 2.15, we see that solving the relevant minimization problem gives
the explicit expression

H(x, t;Cα) = AeCαt(|x− (Cα(1− t))x̂|+ ωt−B)+,

where we recall that C is a constant depending on the C2–norm of Φ and B is a
number of order unity. Thus,

H̃(x, t) = αH(α−1(x+~bt), α−1t;Cα)

= AeCαt(|x− Cα(1− t)x̂+~bt|+ ωt−Bα)+

= AeCαt( |(|x| − Cα(1− t))x̂+~bt|+ ωt−Bα )+,

where ~b = ∇Φ. So we need to ensure that

H̃(x, t) ≥ AeCαt( [|x|+ ωt]− [Cα(1− t) + |~b|t+Bα] )

& η(T ∗)
(3.2)

on the parabolic boundary ∂Σ.

• Next we compute the free boundary velocity of H̃. We have

H̃t = CαH̃ +AeCαt
(
ω +

d

dt
|(|x| − Cα(1− t))x̂+~bt|

)
= CαH̃ +AeCαt

(
ω +

〈
ŷ +~bt, αtŷ +~b

〉)
,

where y = (|x| − Cα(1− t))x̂ is a shrunken version of x, whereas

∇H̃ = ∇|y +~bt| = ŷ +~bt

has absolute value equal to unity. Thus

V (H̃) =
H̃t

|∇H̃|

= AeCαt
(
Cα(|y +~bt|+ ωt−Bα) + ω +

〈
ŷ +~bt, αtŷ +~b

〉)
= AeCαt

(
(1 + Cαt)ω + Cα|y +~bt|+ |y|+ αt2

|y +~bt|
〈ŷ,~b〉+ t

α|y|+ |~b|2

|y +~bt|
−BCα2

)
.

(3.3)

To ensure that locally the free boundary is shrinking faster than the rate given in the
definition of T ∗ we need that

V (H̃) < η̃′(T ∗).
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• We will now amalgamate our conditions and observe the correct choice of parameters.
Let us first uniformly bound

|∇Φ| & ∆ in
[
Φ{≤C∞}

]c
.

We will take t ≤ τ = O(α) and note that e.g.,

|y +~bt| ≥ ||x| − Cα(1− t)− δt| ∼ ||x| − (C + δ)α|+O(α2),

so the expression (3.3) becomes (with A = 1)

V (H̃) = ω − c〈ŷ,~b〉+O(α2) ≥ ω − c∆ +O(α2),

for some constant c > 0 of order unity. Here the negativity of 〈ŷ,~b〉 comes from the
fact that ∇Φ is pointing outwards, whereas the vector from x1 to x0 is pointing in
the opposite direction (again see Figure 3). If we also take η̃′(T ∗) to be higher order
in α, then we arrive at the condition

ω − c∆ < 0. (3.4)

Similarly, taking η(T ∗) also to be higher order in α, the condition (3.2) becomes

|x|+ ωα > (C +B + δ)α+O(α2), (3.5)

where δ is some local upper bound for |∇Φ|: |~b| ≤ δ.
Writing |x| = λα, the conditions (3.5) and (3.4) finally become (for α sufficiently small
and again with A = 1)

λ+ ω > C +B + δ and c∆ > ω,

which can be satisfied by taking λ to be a large enough factor (this corresponds to
inserting a factor λ in the relevant hyperbolic (re)scaling).

• Since ∂Φ{≤C∞+Kη(T ∗)} is compact, we can take α to be uniform over all relevant
x0 ∈ ∂Φ{≤C∞+Kη(T ∗)} (recall that α basically needs to be small enough to ensure
that u(x, T ∗) . η(T ∗) in a ball of size α′ ∼ α) thus yielding a contradiction to the
definition of T ∗.

• We now state the result positively. The argument in fact shows that if T satisfies the
condition

G (T ) : ΩT ⊂ Φ{≤C∞+Kη̃(T )},

then t satisfies G (t) for all t ≥ T . Now by comparison against an equilibrium solution
of the form given in Theorem 3.1 with a sufficiently large C, it is the case that we
can choose K > 0 large enough so that there is some time T satisfying G (T ). We can
now conclude by choosing T even larger (if necessary) so that Kη̃(T ) ≤ ε.
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