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1 Introduction and Gradient Flows

We think of ρ ≥ 0 as a density on RN and study the equation

∂ρ

∂t
−∇2ρm = 0,

with m ≥ 1− 1
N

and m > N
N+2

. By the chain rule, we may write this as

∂ρ

∂t
= mρm−1∇2ρ+m(m− 1)ρm−2|∇ρ|2,

and hence
∂ρ

∂t
= ∇ · [a(ρ)∇ρ],

where a(ρ) = mρm−1. We point out three properties of the porous medium equation.

• (Finite Propagation) Note that a(ρ) vanishes at ρ = 0; this leads in particular for m > 1
to the finite propagation property (see [6]): Making the change of variables

ρ̂ =
m

m− 1
ρm−1,

a direct computation shows that

ρ̂t = (m− 1)ρ̂∇2ρ̂+ |∇ρ̂|2,

so for ρ̂ small, we can approximate by

ρ̂t = |∇ρ̂|2,

which is bounded if ρ is smooth. Phrased differently, the evolution given by the porous
medium equation preserves compact support if m > 1.

• (Preservation of Mass) Let 0 ≤ ζ ≤ 1 be a smooth cutoff function, then two applications
of the divergence theorem gives

d

dt

∫
ρtζ dx =

∫
(∇2ρmt )ζ dx =

∫
ρmt (∇2ζ) dx.
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2 GRADIENT FLOW ON A RIEMANNIAN MANIFOLD

Here the spatial domain is Rd and we assume ρ to be integrable and tending to 0 at infinity,
so taking ζ → 1, we see that

∫
ρ is preserved [7].

• (Preservation of Positivity) This should follow from the maximum principle (see e.g. [1])
and/or note the linear approximation for small ρ̂ from the previous item: ρ̂t = |∇ρ̂|2.

Our goal would be to interpret the evolution given by the equation as gradient flow on some
manifold and derive some rigorous asymptotic results about its convergence to the Barenblatt
solution. In Rn, given a vector field X (which may or may not be autonomous – time indepen-
dent), we may define the flow associated with X as Φ : [0, T ]×Rd → Rd satisfying the system
of ODE’s

Φ(0, x) = x, Φ̇(t, z) = X(t,Φ(z, t)).

A good example to keep in mind is perhaps Hamiltonian flow. Given some H : R2n → R
corresponding to the Hamiltonian (total energy) of some system, Hamilton’s equations say that
∂H
∂p

= q̇, ∂H
∂q

= −ṗ, where q, p are position and momentum, respectively. Hence if we define

V = J∇H, where J =

(
0 −Id
−Id 0

)
, then the flow associated with V describes where we end

up (in position–momentum space with the dimension of the physical space being n) starting at
x and evolving according to Hamilton’s equations. Suppose now instead of this “deterministic”
situation, which is described by flows on Rd, we would like to start off with some initial proba-
bility density and ask how the density function evolves. This leads to the notion that we should
seek to study flows on more general objects, i.e. manifolds.

Since the porous medium equation preserves mass and positivity, as a first approximation,
we can consider the manifold

M = {ρ ≥ 0 :

∫
ρ = 1}.

Eventually, of course, we would be led to study the flow of probability measures, but first we
shall do things formally and this M will suffice for us. First (for linguistic purposes if nothing
else), we gather some facts about manifolds.

2 Gradient Flow on a Riemannian Manifold

A manifold is a topological space M⊂ ∪αUα equipped with homeomorphisms ϕα : Uα → Vα ⊂
Rd, where Vα is open in Rd. We require ϕα ◦ ϕ−1

β to be smooth.
The tangent space at a point p ∈ M , denoted TpM , consists of all vectors v which can be

represented as γ′(0) where γ : (−ε, ε)→ M is a smooth curve such that γ(0) = p, so e.g. TxR
d

is in fact all of Rd, for any x ∈ Rd; on the other hand, if M = Sd, a sphere in d+ 1 dimensions,
then the tangent space at x ∈ Sd, is (homeomorphic to) Rd. We can view an element of Tp(M)
as a function from C∞(M) to R which takes the directional derivative of f ∈ C∞(M) at the
point p.

More precisely, a linear map X : C∞(M) → R is called a derivation at p if it satisfies the
Leibnitz rule, i.e.

X(fg) = f(p)Xg + g(p)Xf, ∀f, g ∈ C∞(M).

2 η.κ.Λ



2 GRADIENT FLOW ON A RIEMANNIAN MANIFOLD

The tangent vectors as described above satisfy this rule and alternatively, the tangent space
Tp(M) can be defined to be the set of all derivations at p. On Rd, each vector v gives rise to
some linear functional (element of C∞(M)∗) at each point x ∈ Rd

Dv|x : C∞(Rd)→ R : f 7→ (Dvf)(x) = lim
t→0

f(x+ tv)− f(x)

t
.

This is nothing other than the directional derivative in the direction v evaluated at x. Dv|x is a
derivation and using the basis representation Dv|x = vi ∂

∂xi
and Taylor’s Theorem, we can show

that vx 7→ Dv|x is an isomorphism between the space of derivations at x and Rn
a .

We now move from the above “pointwise” description to a more global picture: Suppose we
want to take the directional derivative of a function f but in a different direction depending on
where we are. This leads to the notion of the tangent bundle TM = ]p∈MTpM , and a (smooth)
vector field, which is a section of TM

X : M → TM : p 7→ X(p) ∈ TpM.

A vector field then defines an operation on C∞(M):

X : C∞(M)→ C∞(M) : f 7→ Xf : Xf(p) = X(p)f |p,

which we may intuitive interpret as taking the directional derivative of f in the direction X(p)
at the point p. On the other hand, a vector field can be multiplied by f ∈ C∞(M)

X 7→ fX : p 7→ f(p)X(p) ∈ TpM,

and hence the set of all vector fields, denoted Γ(M), is in fact a module over C∞(M) with the
natural linear structure.

Next we must discuss the notion of gradient. We have that f ∈ C∞(Rd) defines a natural
gradient vector field by f 7→ ∇f =

∑
i
∂f
∂xi
∂i, where we have taken {∂1, . . . , ∂d} as a basis for the

tangent space. However, this is clearly not a coordinate–independent expression: E.g. consider
what happens in R2 when we change from Cartesian to polar coordinates – we do not obtain
the gradient as ∂f

∂r
∂r + ∂f

∂θ
∂θ in general, and hence this is not the correct notion to be generalized

to the manifold setting.
A change of perspective leads to a better object. Recall that a vector field acts on C∞(M) by

sending f to Xf . Let us now reverse the role of f and X: We may instead say that f ∈ C∞(M)
defines a map on Γ(M), by

f 7→ df : Γ(M)→ C∞(M) : X 7→ df(X) = Xf.

Restricting attention to each fiber of TM (i.e. going back to a pointwise point of view), we see
that we have

f 7→ dfp : TpM → R : Xp 7→ dfp(Xp) = X(p)f |p.

That is, we see that dfp is a linear functional on TpM , i.e. dfp ∈ T ∗pM and is hence a cotangent
vector, and so df is a covector field. df will turn out to be none other than the calculus notion
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2 GRADIENT FLOW ON A RIEMANNIAN MANIFOLD

of differential:

df =
∂f

∂xi
dxi

and is invariant under coordinate change. To see this, recall that our basis for the tangent space
is {∂1, . . . , ∂d}; in addition let us take {dx1, . . . , dxd} to be a basis for the cotangent space, where,
of course, we have dxi(∂j) = δij. Let us write df = αjdx

j and compute:

df(∂i) = αjdx
j(∂i) = αi,

but df(∂i) is by definition nothing other than ∂f
∂xi

. To be consistent with Otto’s notation, we will
denote

dfp(X) = diff f |p.X

For a nice exposition on manifolds see [5]; a good book is [2].
What we say about Riemannian manifolds are from (in addition to Otto’s paper) [4] and a

course by P. Petersen in Fall 2008. A Riemannian manifold is a manifold M equipped with a
smooth Euclidean inner product gp on each TpM , i.e. if X and Y are smooth vector fields, then
gp(X|p, Y |p) is a smooth function of p. The metric allows us to recover a notion of gradient as
follows: If f ∈ C∞(M), we define grad f to be the vector field satisfying

g(X, grad f) = df(X), ∀X ∈ TM.

Since TpM is a vector space, by the Riez Representation Theorem (at least for the finite dimen-
sional case), grad f is uniquely defined. The gradient clearly depends on the metric g, and by
our remarks from the previous section, we see that it is not possible to define an invariant notion
of gradient without g (see [4], Section 1.1.1 on page 22).

A gradient flow of E on a Riemannian manifold (M, g) is given by the differential equation

dρ

dt
= −gradE|ρ.

Here E :M→ R is thought of as some energy functional. Notice that taking dot product with
g, we in fact have

gρ

(
dρ

dt
, s

)
+ diffE|ρ.s = 0,

for all vector fields s along ρ. Notice that with s = dρ
dt

, we have

d

dt
E(ρ) = diffE|ρ.

dρ

dt
= −gρ

(
dρ

dt
,
dρ

dt

)
,

so that the energy is decreasing along ρt. Note that to see the first equality we compare the
expressions

diffE|ρ.
dρ

dt
= lim

h→0

E(ρ+ hdρ
dt

)− E(ρ)

h
and

d

dt
E(ρ)|t = lim

t→0

E(ρ(t+ h))− E(ρ(t))

t

and Taylor expand.

4 η.κ.Λ
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3 Two Interpretations of the Porous Medium Equation

as Gradient Flow

Recall we are working with the manifold

M = {ρ ≥ 0 :

∫
ρ = 1}.

We will think of the tangent space as

TρM = {s :

∫
s = 0},

the set of mean zero functions. We will not elaborate on this precisely, except to remark that
1) in a natural sense, mean zero functions are orthogonal to constant functions; 2) the role of
tangent vectors is to enable us to take derivatives and hence we will consider e.g. E(ρ+s) where
s ∈ TρM and since the evolution preserves mass, we are forced to use mean zero functions in the
tangent space; 3) a function f can usually be written as f = f0 + fc, where f0 is a mean zero
function and fc is a constant function. Thus, from this perspective, we are viewing the tangent
space as a quotient space where we “divide” out by constant functions (i.e. identify functions
which differ by a constant in some way). This identification will be done via elliptic equations.

3.1 Traditional Approach

In the traditional approach, to obtain TρM, given some mean zero s, we identify all functions q
such that

−∇2q = s.

We define the metric tensor by

gρ(s1, s2) =

∫
∇q1 · ∇q2.

gρ is well defined since assuming
∫
∇ · (q1∇q2) = 0, we see that

gρ(s1, s2) =

∫
s1q2 =

∫
s2q1,

so that e.g. if −∇2q̃1 = s̃1 = s1 (where q̃1 is possibly different from q1), then

gρ(s̃1, s2) =

∫
s2q̃1 =

∫
s̃1q2 =

∫
s1q2 = gρ(s1, s2).

The energy functional is given by

E(ρ) =
1

m+ 1

∫
ρm+1.
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Let us compute the differential of E along s evaluated at ρ:

diffE(ρ).s = lim
t→0

E(ρ+ ts)− E(ρ)

t

= lim
t→0

1

t

1

m+ 1

∫
[(ρ+ ts)m+1 − ρm+1]

=

∫
lim
t→0

1

t

[
ρm+1 + (m+ 1)ρmts+ o(t2)− ρm+1

m+ 1

]
=

∫
ρms.

(This is the Gâteaux differential.) The differential equation gρ
(
dρ
dt
, s
)

+ diffE(ρ).s = 0 then
becomes

0 =

∫
dρ

dt
q + ρms

=

∫
dρ

dt
q − ρm∇2q

=

∫ (
dρ

dt
−∇2ρm

)
q,

where to obtain the last equality we have integrated by parts (twice). Since q is arbitrary, we
have recovered the porous medium equation.

Notice that neither TρM nor gρ depend on ρ. Recalling the identification −∇2q = s, we see
that formally ∇−1s = −∇q, so that

gρ(s, s) =

∫
sq =

∫
(−∇2q)q =

∫
|∇q|2 =

∫
|∇−1s|2,

and hence is the H−1 norm.

3.2 New Approach

For our new approach, we will instead identify all functions p via

−∇ · (ρ∇p) = s,

and use the metric tensor

gρ(s1, s2) =

∫
ρ∇p1 · ∇p2.

6 η.κ.Λ
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Again gρ is well–defined and we still have gρ =
∫
s1p2 =

∫
s2p1: we have that

∇ · (ρ · p1∇p2) = ∇(ρ · p1) · ∇p2 + ρ · p14p2

= p1(∇ρ · ∇p2) + ρ∇p1 · ∇p2 + ρ · p14p2

= p1[∇ · (ρ∇p2)] + ρ∇p1 · ∇p2

= −p1s2 + ρ∇p1 · ∇p2.

Since ρ → 0 at ∞, the integral of the left hand size is zero by the Divergence Theorem and
the result follows (note also that the role of p1 and p2 can clearly be interchanged in the above
computation).

The metric tensor gρ now does indeed depend on ρ and the energy functional is now

E(ρ) =

{
1

m−1

∫
ρm for m 6= 1,∫

ρ log ρ for m = 1.

A similar calculation as in the traditional case shows that we also recover the porous medium
equation here.

More motivation will be given for the new approach, but for now let us note that the new
identification of q has the advantage that it is blatantly clear that

∫
∇ · (ρ · p1∇p2) = 0, by the

divergence theorem, since ρ→ 0 at∞, whereas in the traditional approach, we had to implicitly
assume that

∫
∇·(q1∇q2) = 0, so the new approach seems to allow a wider class of test functions.

4 Physical Derivation of the Porous Medium Equation

To further motivate the new interpretation, and also to familiarize ourselves with some of the
variables that will appear, we give a quick physical derivation of the porous medium equation.
The derivation is based on three assumptions:

• ∂ρ
∂t

+ ∇ · (ρu) = 0 (Continuity equation, expressing conservation of mass; ρ denotes the
mass density of the gas and u denotes (average) velocity)

• u = −M∇p (Darcy’s law: p = pressure, and M depends on permeability of medium and
viscosity of gas; we will take M = Id)

• p = δE
δρ

(Here E is free energy, and δE
δρ

denotes the functional derivative, that is〈
δE

δρ
, s

〉
=

d

dε
E(ρ+ εs)|ε=0,

for all test functions s. Notice that δE/δρ is not the same as diffE(ρ).s, which is actually
equal to 〈 δE

δρ
, s〉.

For a free energy of the form E =
∫
e(ρ), we see that

p = e′(ρ) (= δE/δρ).

7 η.κ.Λ
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Since Darcy’s law allows us to eliminate u in favor of p, we see that if we plug everything in, the
continuity equation becomes

∂ρ

∂t
−∇ · (ρ∇(e′(ρ))) ≡ ∂ρ

∂t
−∇2π(ρ) = 0,

so that
π(ϕ) = ϕe′(ϕ)− e(ϕ).

We see that to obtain the porous medium equation, we need

π(ϕ) = ϕm,

i.e.

e(ϕ) =

{
1

m−1
ϕm for m 6= 1

ϕ logϕ for m = 1,

in accordance with the definition of E in our new interpretation of the porous medium equation
as a gradient flow. So in the new interpretation, E is genuinely the free energy.

Finally, let us take a look at the metric tensor. Recall that by definition we have

gρ(s, s) =

∫
ρ|∇p|2, where −∇ · (ρ∇p) = s.

Notice that this can be reformulated as

gρ(s, s) = inf
u

{∫
ρ|u|2 : s+∇ · (ρu) = 0

}
.

Indeed, we first observe that the solution to the minimization problem has the form u = −∇p
for some p. To see this, first notice that any u can be written uniquely as an orthogonal sum of
a divergence free part and a part which is the gradient of some ϕ ∈ C∞0 :

u = ψ +∇ϕ, ∇ · ψ = 0.

Indeed, a simple integration by parts shows that a divergence free function is always perpen-
dicular to a gradient function; on the other hand, if ϕ = 4−1(∇ · u), then ∇ · (u − ∇ϕ) =
∇ · (u−∇(4−1(∇ · u))) = 0, so u−∇ϕ is divergence free and hence we can explicitly write

u = (u−∇ϕ) +∇(4−1(∇ · u)).

This fact is enough since to satisfy the continuity equation in the constraint, the divergence
free part does not contribute anything and therefore the u with minimal norm would have zero
divergence free part. Hence if u solves the minimization problem, then u = −∇p for some p and
further by the constraint s = −∇ · (ρ∇p) we get∫

ρ|u|2 =

∫
ρ∇p · ∇p = gρ(s, s).
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Finally we remark that the integral
∫
ρ|u|2 corresponds to the dissipation of kinetic energy

as the gas moves with velocity u. Hence the gradient flow equation d
dt
E(ρ) = −gρ

(
dρ
dt
, dρ
dt

)
says

exactly that the rate of change of the free energy is given by the rate of dissipation of kinetic
energy, hence the energetics defines the functional E while the kinetics define the metric tensor
g.

5 Total Derivatives, Covariant Derivatives, and Submer-

sions

The Riemannian metric g induces a distance on M, i.e. given ρ0, ρ1 ∈ M, consider the space
of all smooth curves σ → ρ(σ) ∈ M connecting ρ0 and ρ1 and define the distance to be the
infimum of the (kinetic) energy over all such curves:

d(ρ0, ρ1)2 = inf

{∫ 1

0

g

(
dρ

dσ
,
dρ

dσ

)
: σ → ρ(σ) ∈M, ρ(0) = ρ0, ρ(1) = ρ1

}
.

We would now like to identify this induced distance on M. We will do so by obtaining the
metric g as the “push–forward” of a flat metric (i.e. a metric which does not vary from point to
point) g∗, defined on a bigger space M∗.

First, we introduce the analogue of the Jacobian. Let M and N be manifolds and let
F :M→N be a smooth map between them. Then F induces a linear map

DF : TpM→ TF (p)N ,

such that if f ∈ C∞(N ), then
[DF (X)]f = d(f ◦ F )(X),

that is, the directional derivative of f in the direction of DF (X) ∈ TF (p)(M) is the same as the
directional derivative of the pull–back of f in the direction of X ∈ Tp(M), for all f ∈ C∞(N ).
It can be seen that in Euclidean space DF is exactly given by the Jacobian matrix: Consider
F : Rn → Rm and let f : Rm → R, then it can be checked explicitly that

df(DF (x)) = ∇f · Jx = ∇(f ◦ F ) · x = d(f ◦ F )(x),

where J is the Jacobian matrix and x ∈ Rn. Let’s observe in particular that if we have a curve
γ(t) in M such that γ(0) = p, then

DF (γ′(0)) =
d

dt
F (γ(t))|t=0.

(This can be seen e.g. by taking smooth coordinate charts seeing that DF is still represented by
the Jacobian matrix (see [2], pages 69-72). We can then finish by Taylor expanding both sides.)

Let us now explain how to take the derivative of one vector field in the direction of another
vector field. This is the notion of covariant derivative (see [4], Section 1.1.2): In Euclidean space,
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if X and Y are vector fields, then a natural way to define ∇YX is

∇YX = 〈d(Xi)(Y ), . . . , d(XN)(Y ), 〉

that is, we measure the change in X by measuring how the coefficients change, in the direction
given by Y . This is unfortunately not invariantly defined, but it can be checked that this can
be defined implicitly as

2g(∇YX,Z) = (LXg)(Y, Z) + (dθX)(Y, Z),

where θX(Y ) = g(X, Y ) is a 1–form and LX denotes the Lie derivative. For a general Riemannian
manifold we will have to use this implicit definition, and there are four defining properties of ∇:

• (Tensoriality) ∇αv+βwX = α∇vX + β∇wX.

• (Derivation) ∇Y (X1) +X2) = ∇YX1 +∇YX2 and ∇Y (fX) = (DY f)X + f∇YX.

• (Torsion Free) ∇XY −∇YX = [X, Y ].

• (Metric) DZg(X, Y ) = g(∇ZX, Y ) + g(X,∇ZY ).

In particular, we note an “application” of the last property. Suppose p : RN → R is a scalar
function. We may then use the metric property to compute, with u = ∇p and ∂i denoting the

ith coordinate direction (∇∂i denotes either the directional derivative or the covariant derivative,
depending on the context)

(∇|∇p|2)i = ∇∂i(|∇p|2) = ∇∂i(∇p,∇p) = ∇∂i(u, u) = 2(∇∂iu, u) = 2[Du.u]i,

where Du denotes the Jacobian matrix of u.
Finally we need the notion of a Riemannian submersion (see [4], page 4). Let F : N →M

be a smooth map such that DF is surjective at each point. Hence, as vector spaces,

(kerDF )⊥ ∼= TF (ρ)(M)

for each ρ, and in a natural way, gN can be pushed forward to be a metric on M:

gM(DF (v), DF (w)) = gN (v, w),

for each v, w ∈ (kerDF )⊥. Conversely, suppose we are given a smooth map F : N → M, and
we wish to show it is a submersion. It is enough to show that DF restricted (kerDF )⊥ is an
isometry (for the more general statement gM(F (v), F (w)) = gN (v, w), consider g(v−w, v−w)).
We claim this is equivalent to showing

gM(s, s) = inf
DF (v)=s

gN (v, v).

Indeed, this follows from the facts that we have in the usual way that 1) any element v ∈ N can be
written as v = v0+v⊥, where v0 ∈ kerDF, v⊥ ∈ (kerDF )⊥, so that g(v, v) = g(v0, v0)+g(v⊥, v⊥),
and 2) DF is injective when restricted to (kerDF )⊥.
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6 Submersion Into the Lagrangian Description

So far we have described the evolution via the particle density ρ (an Eulerian description). We
may alternatively describe the situation via coordinates of the particle, i.e. the flow map Φ
(a Lagrangian description). We will attempt to understand the geometry of M via the flat
geometry obtained from the Lagrangian description.

Before giving formal definitions, let us first try to understand how the evolution of the particle
density is given by some flow map. Recall that 1) given a vector field v, we may define the flow
Φ by the differential equation Φ̇ = v, Φ(0) = Id and 2) the continuity equation which says that

∂ρ

∂t
+∇ · (ρu) = 0,

relates the particle density to the velocity, given via a vector field u; we note that implicitly
u depends on time. With a single particle, we can push it around under Φ and therefore it is
natural to do the same when we have a distribution of particles, which leads to the notion of
the push forward of a density. We write

ρ = Φ#ρ0

if for all functions ζ, we have ∫
ζρ =

∫
(ζ ◦ Φ)ρ0.

Now we note that if we define ρt = Φt#ρ0, where Φt is the flow corresponding to u, then the
continuity equation is satisfied. Indeed, let ζ ∈ Cc(RN), then

d

dt

∫
ζρ =

∫
d

dt
(ζ ◦ Φt)ρ0

=

∫
(∇ζ(Φt) · ut(Φt))ρ0

=

∫
(∇ζ · ut)ρt

= −
∫
ζ∇ · (ρtut),

and so ρt solves the continuity equations.
Let us then consider the manifold

M∗ = {diffeomorphisms Φ : RN → RN}

and the map
Π :M∗ →M : Φ→ Φ#ρ0,

where ρ0 is some fixed density, which we envision as the initial density. We envision the tangent
space as

TΦM∗ = {vector fields v : RN → RN},

11 η.κ.Λ
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with the flat metric tensor

g∗Φ(v1, v2) =

∫
(v1 · v2)ρ0.

We now claim that DΠΦ : TΦM∗ → TρM is a Riemannian submersion. Recall that this means
we have to show

gρ(s, s) = inf
DΠΦ(v)=s

g∗Φ(v, v),

for all s ∈ TρM (again recall gρ(s, s) =
∫
ρ|∇p|2, where ∇ · (ρ∇p) = s).

To this end we first make further identification on TΦM∗ via

v = u ◦ Φ.

(That is, we identify vector fields u1 and u2 if u1◦Φ = u2◦Φ.) Notice that with this identification,
the metric tensor becomes

g∗Φ(v1, v2) =

∫
(v1 · v2)ρ0 =

∫
(u1 · u2)ρ,

where ρ = Π(Φ). Now let us try to characterize DΠΦ, kerDΠΦ, and (kerDΠΦ)⊥. First let
us figure out what is DΠΦ. From our discussion about the continuity equation, we see that we
should have dρ

dt
= −∇·(ρu); on the other hand, our identification in TρM says that∇·(ρ∇p) = s.

It is then not surprising that DΠΦ(u) should be the function p on RN satisfying

−∇ · (ρ∇p) = −∇ · (ρu).

Let us assume this for now and show a few things:

• (kerDΠΦ) This characterization of DΠΦ(u) immediately implies that u ∈ kerDΠΦ if and
only if

∇ · (ρu) = 0.

(Indeed, if u ∈ kerDΠΦ, then clearly ∇ · (ρu) = 0; conversely, if ∇ · (ρu) = 0, then
−∇ · (ρ∇p) = 0 and hence p is identified with s = 0.)

• ((kerDΠΦ)⊥) Next we claim that w ∈ (kerDΠΦ)⊥ if and only if there exists some function
p such that

w = ∇p.

Indeed first suppose w ∈ (kerDΠΦ)⊥ and let us write w = w0 + ∇ϕ as an orthogonal
sum, where ∇ · w0 = 0 and ϕ ∈ Cc(RN). By definition of g∗Φ and our characterization of
kerDΠΦ, this means that

∫
(w · u)ρ = 0 for all u such that ∇ · (ρu) = 0. That is, for all

such u, we have∫
w0 · (ρu) =

∫
(w0 · u)ρ = −

∫
(∇ϕ · u)ρ =

∫
∇ · (ϕρu) = 0,

so w0 = 0: This shows that w0 is perpendicular to any divergence free vector field, in
addition to all gradients, and hence we conclude w = ∇ϕ. Conversely, if w = ∇ϕ, then
clearly the same integration by parts as above shows that

∫
(w·u)ρ = 0 for any u ∈ kerDΠΦ.
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7 GEODESICS AND A PROPERTY OF Π

• (Riemannian Submersion) Let us now write −∇· (ρ∇p) = −∇· (ρu) in variational form as∫
(∇p · ∇ζ)ρ =

∫
(u · ∇ζ)ρ,

for all ζ : RN → R. If we establish this, then we obtain
∫
|∇p|2ρ =

∫
(u · ∇p)ρ ≤

∫
|u|2ρ

and hence by our characterization of (kerDΠΦ)⊥, we have∫
|∇p|2ρ = inf

DΠΦ(u)=p

∫
|u|2ρ.

(In particular, the infimum is achieved by u such that u = ∇p, which we showed satisfies
DΠΦ(u) = p.) Recalling the definition of gρ and g∗Φ, we see that we have established that
Π is indeed a Riemannian submersion.

It remains to establish our (variational) characterization of DΠΦ(u). Consider the curve in
M∗ given by

∂Φ̃

∂σ
(σ) = u ◦ Φ̃(σ), Φ̃(0) = Φ.

This curve clearly goes through Φ at σ = 0, and we may map it under Π to obtain a curve
σ → ρ̃(σ) in M which goes through ρ at σ = 0. It is enough to show that the tangent to this
image curve at σ = 0 satisfies the variational formulation. On the one hand, by definition of Π,∫

ρ̃(σ)ζ =

∫
(ζ ◦ Φ̃(σ))ρ0,

so that ∫
∂ρ̃

∂σ |σ=0
ζ =

∫
[(∇ζ ◦ Φ) · (u ◦ Φ)]ρ0 =

∫
(∇ζ · u)ρ.

On the other hand, denoting ∂ρ̃
∂σ |σ=0

= s and recalling the identification −∇ · (ρ∇p) = s, we see

that ∫
sζ = −

∫
∇ · (ρ∇p)ζ =

∫
(∇ζ · ∇p)ρ.

7 Geodesics and a Property of Π

We now derive some more properties of Π. First we need the notion of a geodesic. Informally, a
geodesic is a curve with constant speed and is described by the differential equation γ̈ = 0. E.g.
in Euclidean space, if γ : [0, 1] → RN is a curve, then γ̈ = (γ̈1(t), . . . , γ̈N(t)), and we quickly
conclude that geodesics are straight lines, i.e. γ(t) = γ(0) + vt where v = (γ̇1(0), . . . , γ̇N(0)).

This concept in general depends on the metric as can be seen if we attempt to take a second
derivative of some curve γ(s, t) (for convenience we assume γ takes two real parameters):

∂2γ

∂s∂t
=

∂

∂s
(
∂γi

∂t
∂i) =

∂2γi

∂s∂t
∂i +

∂γi
∂t

(
∂

∂s
∂i) =

∂2γi

∂s∂t
∂i +

∂γi
∂t
∇ ∂γ

∂s
∂i,

and the covariant derivative certainly depends on the metric g. However, we will build all this
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7 GEODESICS AND A PROPERTY OF Π

into our definition of second derivatives and interpret

γ̈ = ∇γ̇ γ̇.

Further, we note that we therefore have that the metric property is satisfied:

∂

∂tk
g

(
∂γ

∂ti
,
∂γ

∂tj

)
= g

(
∂2γ

∂tk∂ti
,
∂γ

∂tj

)
+ g

(
∂γ

∂ti
,
∂2γ

∂tk∂tj

)
.

We will assume that given an initial point p and initial direction (some v ∈ TpM), geodesics
exist and are unique (for more on this see [4], Section 5.2).

Recall that our eventual goal is to identify the distance on M from the distance on M∗.
The first step is identification of the geodesics, as geodesics define the distance. Since geodesics
depend only on the metric, it is indeed the case that an isometry takes geodesics to geodesics.
In the case of a submersion, we have to be a bit more careful: We need to ensure that tangents
of the geodesics remain in (kerTΠΦ)⊥. In our case, this is the property that if σ 7→ Φ(σ) is a
geodesic in M∗, then

dΦ

dσ
(0) ∈ (kerDΠΦ(0))

⊥ implies
dΦ

dσ
(σ) ∈ (kerDΠΦ(σ))

⊥ for all σ.

We will now establish this via a uniqueness argument involving a Hamilton–Jacobi equation.
The geodesic equation in M∗ says d2Φ

dσ2 = 0. Let us write dΦ
dσ

= u ◦ Φ, where u 7→ u(σ,Φ) is
the tangent field. Then we see that

d2Φ

dσ2
=

d

dσ
(u ◦ Φ)

=
∂u

∂σ
◦ Φ + 〈∂u1

∂xi

∂Φi

∂σ
, . . . ,

∂uN
∂xi

∂Φi

∂σ
〉

=
∂u

∂σ
◦ Φ + (Du ◦ Φ) · dΦ

dσ

=

(
∂u

∂σ
+Du.u

)
◦ Φ,

where D denotes the Jacobian matrix in the spatial variables and the index i is to be summed
over in the second to last line. The geodesic equation then becomes

∂u

∂σ
+Du.u = 0.

Now if σ 7→ Φ(σ) is a geodesic in M∗ and dΦ
dσ

(0) ∈ (kerDΠΦ(0))
⊥, then by our previous charac-

terization, there exists some p0 such that

∇p0 =
dΦ

dσ
(0) = u(0)

and therefore the tangent field u associated to this geodesic satisfies the displayed PDE with
u(0) = ∇p0.
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On the other hand, we can let p̃(σ, x) solve the Hamilton–Jacobi equation

∂p̃

∂σ
+

1

2
|∇p̃|2 = 0

with initial data p0. Now if ũ = ∇p̃, then a direct computation shows

∂ũ

∂σ
= −1

2
∇|∇p̃|2 = −Dũ.ũ.

We conclude that u and ũ solve the same equation with identical initial date, so ũ = u and hence

u(σ) = ∇p̃(σ),

for all σ. But this by our previous characterization means exactly that dΦ
dσ

(σ) = u(σ) ∈
(kerDΠΦ(σ))

⊥, for all σ.

8 More Properties of the Geodesic under Π

We will need a few observations about the behavior of geodesics under Π before we can identify
the geodesics in M from those in M∗.

• (Energy is Descreasing Under Π) First note how energy transforms under Π: Suppose
σ 7→ Φ(σ) is a curve in M∗ and consider its image σ 7→ ρ(σ) in M under Π. Since we
have ρ(σ) = Π(Φ(σ)), we have

dρ

dσ
= DΠΦ(σ)

dΦ

dσ
.

Since Π is a submersion and we have gρ(s, s) = infDΠΦ.v=s g
∗
Φ(v, v), we clearly have∫

gρ

(
dρ

dσ
,
dρ

dσ

)
dσ ≤

∫
g∗Φ

(
dΦ

dσ
,
dΦ

dσ

)
dσ,

with equality if (and only if) dΦ
dσ
∈ (kerDΠΦ)⊥.

• (Images of Geodesics Are Geodesics) Next we observe that basically, images of
geodesics are geodesics. This is fairly clear since we have that TρM ∼= (kerDΠΦ)⊥ (here
ρ = Π(Φ)), and geodesics only depend on the metric g and the property in the previous
section guarantees exactly that geodesics remain in (kerDΠΦ)⊥ if it starts out there.

More precisely, recall for us the induced distance is defined as

d(ρ0, ρ1)2 = inf

{∫ 1

0

g

(
dρ

dσ
,
dρ

dσ

)
: σ → ρ(σ) ∈M, ρ(0) = ρ0, ρ(1) = ρ1

}
.

By studying variations of this energy, we can show that minima of this energy must be
geodesics: Given a curve γ (which we assume to be smooth), let’s denote

E(γ) =

∫ 1

0

g (γ̇, γ̇) dt.
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8 MORE PROPERTIES OF THE GEODESIC UNDER Π

We can then consider proper variations of γ, i.e. some smooth γ(s, t) such that γ(0, t) = γ(t)
and both endpoints are fixed for all s, so in particular ∂γ

∂s
|s=0 = 0. If γ minimizes E, then

dE

ds
|s=0 = 0,

but then by the metric property of second derivatives

d

ds
E(γ)|s=0 = 2

∫ 1

0

g

(
∂2γ

∂s∂t
,
∂γ

∂t

)
dt

= 2

∫ 1

0

∂

∂t
g

(
∂γ

∂s
,
∂γ

∂t

)
− g

(
∂γ

∂s
,
∂2γ

∂t2

)
dt

= −2

∫ 1

0

g(V (t), γ̈) dt,

where V (t) = ∂γ
∂s
|(0,t) denotes the variational field. Any such variational field with V (0) =

V (1) = 0 gives a variation of γ and hence in this case if we choose V (t) = γ̈, then we see
that

0 =
dE

ds
|s=0 = −

∫
g(γ̈, γ̈) dt,

and hence γ̈ = 0 and γ is a geodesic. We have done this for the case where γ is smooth,
but another choice of V (t) actually yields the result for piecewise smooth curves (see [4],
Section 5.4 pages 127-129, especially Theorem 13). We note that in general the converse is
not true: For example, on the sphere geodesics are part of great circles, and these clearly
don’t always minimize distance.

So now suppose σ 7→ Φ(σ) is a geodesic on (M∗, g∗) with dΦ
dσ
∈ (kerDΠΦ)⊥, then σ 7→ ρ(σ)

is a geodesic on (M, g): It is enough to show that it is an energy minimizing curve,
so if (ε, σ) 7→ ρ̃(ε, σ) is a variation of σ 7→ ρ(σ), then we may lift it to be a variation

(ε, σ) 7→ Φ̃(ε, σ) (such that Φ̃(0, σ) = Φ(σ)) with dΦ̃
dσ
∈ (kerTΦ̃Π)⊥, and hence∫

gρ

(
dρ

dσ
,
dρ

dσ

)
dσ =

∫
g∗Φ

(
dΦ

dσ
,
dΦ

dσ

)
dσ ≤

∫
g∗

Φ̃

(
dΦ̃

dσ
,
dΦ̃

dσ

)
dσ =

∫ (
dρ̃

dσ
,
dρ̃

dσ

)
dσ.

• (Onto: Geodesics Come From Geodesics) Conversely, if σ 7→ ρ(σ) is a geodesic with
ρ(0) = ρ0, then there exists a geodesic σ 7→ Φ(σ) with Φ(0) =id, dΦ

dσ
∈ (kerDΠΦ)⊥ such

that σ 7→ ρ(σ) is its image under Π: This is clear as we may simply consider the geodesic
in M∗ with the prescribed boundary condition and such that dΦ

dσ
(0) ∈ (kerDΠΦ(0))

⊥.
The property we established in the previous section implies the belonging to kernel perp
property is preserved along the geodesic. Thus, by the previous observation, the image of
this geodesic under Π is a geodesic inM satisfying the same initial data as σ 7→ ρ(σ) and
hence must coincide with it.
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Finally, combining the previous observations, we see that in fact

d(ρ0, ρ)2 = inf
Π(Φ)=ρ

d∗(id,Φ)2.

Indeed given any Φ, consider any curve σ 7→ Φ̃(σ) such that Φ̃(0) = id and Φ̃(1) = Φ, then
d(ρ0, ρ)2 ≤ d∗(id,Φ)2 comes from the definition of d and the fact that energy is decreasing under
Φ. On the other hand, we may take an energy minimizing curve σ 7→ ρ̃(σ) connecting ρ0 to ρ
and use the “onto” property of geodesics under Π and the definition of d∗ to produce some Φ
such that the opposite inequality holds.

9 Identification of Geodesics and the Induced Distance

Now it is fairly straightforward to identify the geodesics and induced distance in (M, g) from
those in (M∗, g∗). Now let σ 7→ ρ(σ) be a geodesic with initial data

ρ(0) = ρ0 and
dρ

dσ
(0) = s

and consider the corresponding geodesic in (M∗, g∗) with

Φ(0) = id, DΠid

(
dΦ

dσ
(0)

)
= s and

dΦ

dσ
∈ (kerDΠΦ)⊥, for all σ

and
ρ(σ) = Φ(σ)#ρ0, for all σ.

By our representation of the tangent vectors and our characterization of DΠid, we have that

−∇ · (ρ0∇p) = s = DΠid

(
dΦ

dσ
(0)

)
= −∇ ·

(
ρ0
dΦ

dσ
(0)

)
.

Since dΦ
dσ

(0) ∈ (kerDΠid)⊥, we have dΦ
dσ

(0) = ∇p̃, for some p̃, which by the previous display we
may take to be p (since we identify p’s which solve the same equation ∇ · (ρ0∇p) = s). Recall
the geodesic equation in (M∗, g∗) is given by

∂2Φ

∂σ2
= 0.

With initial conditions Φ(0) = id and dΦ
dσ

(0) = ∇p, we see that we have Φ of the form (note that
1
2
∇|y|2 = y)

Φ(σ) = ∇
(

1

2
|y|2 + σp

)
.

Therefore the geodesics in (M, g) are given by

ρ(σ) =

[
∇
(

1

2
|y|2 + σp

)]
#ρ0,
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where

ρ(0) = ρ0 and
dρ

dσ
(0) = −∇ · (ρ0∇p).

Finally we identify the induced distance. We have

d(ρ0, ρ)2 = inf
ρ=Φ#ρ0

d∗(id,Φ)2

Now recall thatM∗ is flat and hence the geodesic equaion really is Φ̈ = 0, so in particular given
Φ1,Φ2,

tΦ1 + (1− t)Φ2

is a geodesic. Since the curvature is zero for M∗, by the second variational formula for energy
(see [4], Section 6.2, Theorem 21), geodesics indeed do minimize energy (which we take to be
the distance squared here as well), and hence (recall g∗Φ(v1, v2) =

∫
ρ0v1 · v2)

d∗(Φ1,Φ2) =

∫ 1

0

∫
ρ0|Φ1 − Φ2|2 dt =

∫
ρ0|Φ1 − Φ2|2.

So we finally conclude

d(ρ0, ρ)2 = inf
ρ=Φ#ρ0

∫
ρ0|id− Φ|2.

10 The Wasserstein Metric

The induced distance from the previous section is basically the Wasserstein metric. Indeed,
we may imagine a mass transference problem from a density ρ0 to ρ1 minimizing over the cost
function given by the Euclidean distance squared. The existences of Φ such that ρ1 = Φ#ρ0

corresponds to the existence of a solution to the so–called Monge’s problem.
In general, we ask for a relaxed version of the problem by allowing mass to be “split”.

More precisely, let µ0 and µ1 be nonnegative Borel probability measures and consider the set of
couplings of µ0 and µ1:

P (µ0, µ1) = {Borel probability measures µ on RN ×RN |∫
ζ(y0) µ(dy0, dy1) =

∫
ζ(y0) µ0(dy0) and∫

ζ(y1) µ(dy0, dy1) =

∫
ζ(y1) µ1(dy1) for all ζ ∈ C∞0 (RN)}.

So basically any “question” we ask about the first “coordinate” has an answer which is the
same as if we were just using the µ0 measure and similarly for the second “coordinate”. Said
differently, we have

π1#µ = µ0 and π2#µ = µ1,

where π1 and π2 corresponds to projection onto the first and second coordinates, respectively, so
e.g. if A ∈ RN

1 , then µ0(A) = π1#µ(A) = µ(A×RN
2 ). We then define the Wasserstein distance

18 η.κ.Λ
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between µ0 and µ1 as

d(µ0, µ1) = inf
µ∈P (µ0,µ1)

∫
|y1 − y0|2 µ(dy0, dy1).

This minimization problem is the Kantorovich problem and the minimizing µ is called a trans-
ference plan.

Let us note that the product measure µ0 × µ1 is always contained in P (µ0, µ1). Here each
“particle” in the support of µ0 is transported into all of the support of µ1, with weight given by
µ1. This is in contrast to the situation when Monge’s problem has a one–to–one solution: each
particle x is transported to Φ(x) (which is unique). In the case where we have densities ρ0 and
ρ1 and Φ exists, the corresponding coupling is given by

µ = (id× Φ)#ρ0,

so then ∫
ζ(x0, x1) µ(dx0, dx1) =

∫
ζ(x0,Φ(x0))ρ0(x0) dx0,

and so ∫
|id(x0)− Φ(x0)|2ρ0(x0) dx0 =

∫
|x0 − x1|2 µ(dx0, dx1).

Finally, we point out that in the case µ0 = ρ0 dx0 and µ1 = ρ1 dx1 have bounded support, it has
been shown (by Brenier in 1991) that the Kantorovich problem has a unique solution given by

µ = (id×∇ϕ)#ρ0,

where ϕ is a convex function. So here ρ1 = ∇ϕ#ρ0 and in this case the relaxation is artificial.
Recall also in our case we have

ϕσ(y) =
1

2
|y|2 + σp(y).

11 Explanation and Statement of Results

The porous medium equation admits an exact self–similar solution of the form

ρ∗(t, x) =
1

tNα
ρ̂∗

( x
tα

)
where ρ̂∗ is given implicitly as

e′(ρ̂∗(y)) =


m
m−1

ρ̂∗(y)m−1 = max{λ− α 1
2
|y|2, 0} for m > 1

log ρ̂∗(y) + 1 = λ− α 1
2
|y|2 for m = 1

m
m−1

ρ̂∗(y)m−1 = λ− α 1
2
|y|2 for m < 1

,

where

e(ρ) =

{
1

m−1
ρm for m 6= 1

ρ log ρ for m = 1
,
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so that E(ρ) =
∫
e(ρ),

α =
1

N(m− 1) + 2

and λ is such that ∫
ρ̂∗ = 1.

The goal is to show that under the rescaling

x = tαy and t = eτ , so that ρ(t, x) =
1

tNα
ρ̂
(

log t,
x

tα

)
,

ρ̂→ ρ̂∗, as τ →∞.

More precisely, one can check that ρ̂ satisfies

∂ρ̂

∂τ
−∇2

yρ̂
m − α∇y · (ρ̂y) = 0

and can be interpreted as the gradient flow

dρ̂

dτ
= −gradF |ρ̂,

where F is now given by
F (ρ̂) = E(ρ̂) + αM(ρ̂),

that is, F is E plus the second moment

M(ρ̂) =

∫
1

2
|y|2ρ̂(y) dy.

We will show three asymptotic results

d

dτ
(e2ατ |gradF|ρ̂|2) ≤ 0,

d

dτ
(e2ατ (F (ρ̂)− F (ρ̂∗))) ≤ 0,

d

dτ
(e2ατd(ρ̂, ρ̂∗)

2) ≤ 0.

Here the distance in the last line will turn out to be the Wasserstein distance.
These goals will be achieved roughly in a three step process: 1) formal manipulations 2)

proof in the smooth setting 3) approximation argument.

12 F and gradF

First we show that
F (ρ̂)− F (ρ̂∗) ≥ 0, for all ρ̂ ∈M,
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so ρ̂∗ is a minimizer of F and hence 0 = −gradF|ρ̂∗ . In this section for simplicity of notation,
we will denote ρ̂ = ρ. Let us first define

H(ρ1, ρ0) =

∫
[e(ρ1)− e(ρ0)− e′(ρ0)(ρ1 − ρ0)],

where e is the energy density (so that E(ρ) =
∫
e(ρ)) and in case m < 1, we take H(ρ1, ρ0) =∞

if ρ0 vanishes on a set of positive measure. Notice that since e is convex, H ≥ 0. We now claim
that

F (ρ)− F (ρ∗)

{
≥ H(ρ, ρ∗) for m > 1

= H(ρ, ρ∗) for m ≤ 1
.

We will do the case m > 1 (the cases m < 1 and m = 1 follow by similar reasoning). For m > 1,
we have e(ρ) = 1

m−1
ρm, so that e′(ρ) = m

m−1
ρm−1, and hence

H(ρ, ρ∗) = E(ρ)− E(ρ∗)−
∫

m

m− 1
ρm−1
∗ (ρ− ρ∗).

Now recall F (ρ) = E(ρ) +
∫
α 1

2
|y|2ρ(y) dy, so that the above becomes

F (ρ)− F (ρ∗) = H(ρ, ρ∗) +

∫ (
m

m− 1
ρm−1
∗ + α

1

2
|y|2
)

(ρ− ρ∗).

Now for m > 1, the definition of ρ∗ says that m
m−1

ρm−1
∗ (y) = max{λ − α 1

2
|y|2, 0}. Now if y is

such that λ− α 1
2
|y|2 ≥ 0, then

F (ρ)− F (ρ∗) = H(ρ, ρ∗) +

∫
λ(ρ− ρ∗) = H(ρ, ρ∗),

whereas if y is such that the maximum is achieved at 0, then ρ∗ = 0 and λ ≤ α 1
2
|y|2, and we

still get instead F (ρ)− F (ρ∗) ≥ H(ρ, ρ∗).
Now we claim that

|gradF|ρ|2 =

∫
ρ|∇p|2,

where p(y) = e′(ρ(y)) +α 1
2
|y|2 is the pressure corresponding to the “rescaled” energy functional

F . Recall that the gradient is defined implicitly via

g(gradF,X) = dF (X),

for all X ∈ TρM . Now note that since g(v−w, v−w) ≥ 0 and hence 1
2
g(v, v) ≥ g(v, w)− 1

2
g(w,w)

for any v, w ∈ TρM , we have the inequality (with v = gradF and s = w ∈ TρM arbitrary)

1

2
g(gradF, gradF ) ≥ g(gradF, s)− 1

2
g(s, s)

= diffF|ρ.s−
1

2
g(s, s),
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and hence
1

2
g(gradF, gradF ) = sup

s∈TρM

{
diffF|ρ.s−

1

2
g(s, s)

}
.

Now since F =
∫
e(ρ(y)) + α 1

2
|y|2 dy, we have that

diffF|ρ.s =

∫
ps,

with p as defined above. Recalling that g(s, s) =
∫
ρ|∇q|2, where −∇ · (ρ∇q) = s, we see that

after an integration by parts (∇ · (pρ∇q) = p∇ · (ρ∇q) + (ρ∇q) · ∇p),∫
ps− 1

2
g(s, s) =

∫
ρ∇p · ∇q −

∫
ρ

1

2
|∇q|2.

Hence

1

2
g(gradF, gradF ) = sup

q:RN→R

{∫
ρ∇p · ∇q −

∫
ρ

1

2
|∇q|2

}
=

∫
ρ

1

2
|∇p|2,

since the maximum is clearly achieved by q = p as evidenced by the fact that the quantity
ax− 1

2
x2 is maximized at x = a.

13 Computation of HessE and HessM

Let f :M→ R and X, Y ∈ Γ. Then the Hessian is implicitly defined as

Hess f(X, Y ) = g(∇X∇f, Y ).

It is easy to check that in Euclidean space this makes sense and corresponds to the usual notion
of Hessian. In Otto’s notation, we instead denote

Hess fX = ∇X∇f.

Now suppose G :M→ R and σ 7→ ρ(σ) is a geodesic with

ρ(0) = ρ0 and
dρ

dσ
(0) = s,

then we note that

gρ0(s,HessG|ρ0s) = g(s,∇s∇G|ρ0)

= Ds[g(s,∇G|ρ0)]− g(∇ss,∇G|ρ0)

= Ds[g(s,∇G|ρ0)],
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since

∇ss = ∇s
dρ

dσ
(0) =

d2ρ

dσ2
(0) = 0.

Therefore,

gρ0(s,HessG|ρ0s) = Ds[g(s,∇G|ρ0)]

= Ds[diffG|ρ0 .s]

=
d2

dσ2
G(ρ(σ))|σ=0,

that is, the Hessian of G can be computed by taking second derivatives of G along geodesics.
Notice here we have used the fact that diffG|ρ0 .s = d

dσ
G(ρ(σ))|σ=0, where s = dρ

dσ
(0). This is not

difficult to see: We simply compare the expressions

diffG|ρ0 .s = lim
t→0

G(ρ0 + ts)−G(ρ0)

t
and

d

dσ
G(ρ(σ))|σ=0 = lim

t→0

G(ρ(0 + t))−G(ρ0)

t

and Taylor expand.
Recall that tangent vectors are presented by

−∇ · (ρ0∇p) = s, gρ(s1, s2) =

∫
ρ∇p1 · ∇p2

and geodesics are characterized as

ρ(σ) = ∇ϕ(σ)#ρ0,

where

ϕ(σ, y) =
1

2
|y|2 + σp(y).

We can now identify HessM|ρ0 . We have

M(ρ) =

∫
1

2
|y|2ρ(y) dy =

∫
1

2
|∇ϕσ(x)|2ρ0(x) dx =

∫
1

2
〈x+ σ∇p(x), x+ σ∇p(x)〉ρ0(x) dx.

Hence

gρ0(s,HessM|ρ0s) =
d2

dσ2 |σ=0
M(ρ(σ))

=

∫
1

2

d2

dσ2
[σ2|∇p(x)|2]ρ0(x) dx

=

∫
|∇p|2ρ0

= gρ0(s, s),

and hence (recall ρ0 is actually arbitrary, as opposed to the ρ0 which is chosen to be fixed inM
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in defining the submersion Φ)

HessM|ρ = id, for all ρ ∈M.

Much more work is required to compute HessE|ρ0 . By the definition of # we have for all
ζ ∈ C∞0 (RN), ∫

ζ(∇ϕσ(y))ρ0(y) dy =

∫
ζ(x)ρσ(x) dx,

and so by the change of variables formula

[detD2ϕσ][ρσ(∇ϕσ(y))] = ρ0(y),

where D2ϕσ denotes the N ×N matrix of the second spatial derivatives of ϕσ, i.e. the Hessian.
Recalling that E(ρ) =

∫
e(ρ), we have again by the change of variables formula

E(ρσ) =

∫
e(ρσ(x)) dx =

∫
e(ρσ)(∇ϕσ(y))[detD2ϕσ] dy,

and hence combining with the previous expression, we get

E(ρσ) =

∫
e

(
ρ0

detD2ϕσ

)
[detD2ϕσ].

Now let us observe three things about D2ϕσ:

• D2ϕσ is symmetric by equality of mixed partials.

• D2ϕσ is positive definite for sufficiently small σ, since D2ϕ(0) = 1
2
D2|y|2 = id.

• ∂2

∂σ2D
2ϕσ = 1

2
D2 ∂2

∂σ2 (|y|2 + σp(y)) = 0.

We first aim to show that d2

dσ2E(ρσ) ≥ 0 (and hence E is convex on M). For simplicity of
notation, let σ 7→ Aσ be a curve in the space of symmetric and positive definite N ×N–matrices
which satisfy

A(0) = id and
d2A

dσ2
= 0

(we envision Aσ = D2ϕσ) and let z > 0 (we envision z = ρ0(y)). Recall the osmotic pressure π
is related to the energy density e by

π(z̃) = z̃e′(z̃)− e(z̃),

so explicit computations show that

d

dσ

[
e
( z

detA

)
detA

]
= −π

( z

detA

) d

dσ
detA,

d2

dσ2

[
e
( z

detA

)
detA

]
= π′

( z

detA

) z

(detA)2

(
d

dσ
detA

)2

− π
( z

detA

) d2

dσ2
detA.
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By Jacobi’s formula, we have that

d det(A) = tr(adj(A)dA),

where adj(A) denotes the adjugate of A (conjugate of the matrix formed by cofactors of A), so
that

∂ det(A)

∂Aij
= adj(A)ji = det(A)(A−1)ji

(Jacobi’s formula can be derived from Laplace’s formula for the determinant of a matrix:
det(A) =

∑
j AijadjT (A)ij and the fact that

∑
i

∑
j AijBij = tr(ATB)), so it follows that

d

dσ
detA = tr

(
A−1dA

dσ

)
detA

and

d2

dσ2
detA =

(
tr

(
A−1dA

dσ

))2

detA+
d

dσ

[
tr

(
A−1dA

dσ

)]
· detA

=

(
tr

(
A−1dA

dσ

))2

detA+

[
tr

(
A−1d

2A

dσ2

)
− tr

(
A−1dA

dσ

)2
]
· detA.

To establish the last inequality we need to show that

d

dσ

[
tr

(
A−1dA

dσ

)]
= tr

(
A−1d

2A

dσ2

)
− tr

(
A−1dA

dσ

)2

.

In general if P,Q are matrices,

d

dσ
tr(PQ) =

∑
k

d

dσ
(PQ)kk =

∑
k

∑
`

d

dσ
(Pk` ·Q`k) = tr

(
d

dσ
(PQ)

)
,

where d
dσ

(PQ) satisfies the usual product rule. Since as for scalars we have

d(AA−1)

dσ
= 0,

it follows that
dA−1

dσ
= −A−1dA

dσ
A−1,

so
d

dσ

(
A−1dA

dσ

)
=
dA−1

dσ

dA

dσ
+ A−1d

2A

dσ2
= A−1d

2A

dσ2
−
(
A−1dA

dσ

)2

.

The result now follows by taking the trace.
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Plugging these expression in, we get

d2

dσ2

[
e
( z

detA

)
detA

]
= detA · {(wπ′(w)− π(w)) · (tr(A−1B))2

+ π(w) ·
(

tr(A−1B)2 + tr

(
A−1dB

dσ

))
},

where

B =
dA

dσ
and w =

z

detA
.

We will now invoke the condition that d2A
dσ2 = 0 so that the term containing dB

dσ
is identically zero.

To handle the remaining terms let us set

C := A−1/2BA−1/2

so that
(A−1B)2 = A−1/2C2A1/2 =⇒ tr(A−1B)2 = tr(C2).

Since A is symmetric, B is also symmetric, and it is not difficult to see (via e.g., explicit
diagonalization) that A−1/2 is symmetric as well and so C is symmetric. It follows that

tr(C2) =
∑
k

∑
`

C2
k` ≥

∑
k

C2
kk.

On the other hand,

(trC)2 =

(∑
k

Ckk

)2

,

so it follows from convexity of the function x 7→ x2 that

tr(A−1B)2 = tr(C2) ≥ 1

N
(trC)2 = (tr(A−1B))2,

and hence (recalling π(z) = zm)

d2

dσ2

[
e
( z

detA

)
detA

]
≥ (wπ′(w)−

(
1− 1

N

)
π(w))(tr(A−1B))2 detA

= (m− (1− 1

N
))wm(tr(A−1B))2 detA

≥ 0,

where in the last line we have used the condition that m ≥ 1 − 1
N

and also the fact that
det(A(0)) = 1 since A(0) = id, so detA ≥ 0 for sufficiently small σ. Recalling E(ρσ) =∫
e
(

ρ0

detD2ϕσ

)
detD2ϕσ, we have shown

gρ0(s,HessE|ρ0s) =
d2

dσ2 |σ=0
E(ρσ) ≥ 0.
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We have already shown that gρ0(s,HessM|ρ0 , s) = gρ0(s, s), so

gρ(s,HessF|ρs)= gρ(s,HessE|ρ0s) + gρ(s,HessM|ρ0s)

≥ |s|2,

that is, F is uniformly strictly convex on (M, g). We note that a more explicit expression for
d2

dσ2

[
e
(

z
detA

)
detA

]
at σ = 0 is possible using the fact that A(0) = id.

14 Derivation of Main Results by Formal Riemannian

Calculus

Let us now formally derive the main results from the following ingredients (we again denote
ρ̂ = ρ):

• dρ
dt

= −gradF|ρ

• −gradF|ρ∗ = 0

• 〈s,HessF|ρs〉 ≥ α|s|2

First we derived that
d

dτ
(e2ατ |gradF|ρ|2) ≤ 0.

We have (with D
dτ

denoting covariant derivative)

d

dτ
|gradF|ρ|2 = 2g

(
gradF|ρ,

D

dτ
gradF|ρ

)
= 2g

(
gradF|ρ,HessF|ρ

dρ

dτ

)
= −2g(gradF|ρ,HessF|ρgradFρ)

≤ −2α|gradFρ|2,

hence if we set G(τ) = |gradF|ρ|2, then dG
dτ
≤ −2αG so that d

dτ
(e2ατG) = e2ατ (2αG+ dG

dτ
) ≤ 0.

Next we bound F by gradF and gradF by HessF . First we let σ 7→ ρ(σ) be a curve of least
energy, so that

d(ρ0, ρ1)2 =

∫ 1

0

∣∣∣∣dρdσ
∣∣∣∣2 dσ.

Recall this means that σ 7→ ρ(σ) is a geodesic so that

D

dσ

dρ

dσ
= 0,

and so the speed is also constant:

d

dσ

∣∣∣∣dρdσ
∣∣∣∣2 = 2g

(
dρ

dσ
,
D

dσ

dρ

dσ

)
= 0.

27 η.κ.Λ
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Now by definition of grad , we have

d

dσ
F (ρ) = diffF (ρ).

dρ

dσ
= g

(
dρ

dσ
, gradF|ρ

)
,

so that by the “metric” property of the covariant derivative

d2

dσ2
F (ρ) = g

(
D

dσ

dρ

dσ
, gradF|ρ

)
+ g

(
dρ

dσ
,
D

dσ
gradF|ρ

)
= g

(
dρ

dσ
,HessF|ρ

dρ

dσ

)
≥ α

∣∣∣∣dρdσ
∣∣∣∣2

= α d(ρ0, ρ1)2.

Viewing F (ρ) as a real–valued function of σ and Taylor expanding, we obtain that

F (ρ1)− F (ρ0) =
d

dσ
F (ρ)|σ=0 +

1

2

d2

dσ2
F (ρ)|σ=0 + . . .

≥ g

(
dρ

dσ |σ=0
, gradF|ρ0

)
+ α

1

2
d(ρ0, ρ1)2.

Similarly,

F (ρ0)− F (ρ1) ≥ −g
(
dρ

dσ |σ=1
, gradF|ρ1

)
+ α

1

2
d(ρ0, ρ1)2.

Adding the previous two displays, we obtain

g

(
dρ

dσ |σ=1
, gradF|ρ1

)
− g

(
dρ

dσ |σ=0
, gradF|ρ0

)
≥ α d(ρ0, ρ1)2.

Notice also that an application of Cauchy–Schwarz implies that

F (ρ1)− F (ρ0) ≥ −
∣∣∣∣dρdσ |σ=0

∣∣∣∣ |gradF|ρ0 | = −d(ρ0, ρ1)|gradF|ρ0|.

By considering F (ρ0)− F (ρ1) and combining, we get

|F (ρ1)− F (ρ0)| ≤ d(ρ0, ρ1) max{|gradF|ρ0|, |gradF|ρ1|.

Now we can derive
d

dτ
(e2ατd(ρ, ρ∗)

2) ≤ 0.

Recall that F (ρ)− F (ρ∗) ≥ 0 so that ρ∗ is a minimizer of F and hence

0 = −gradFρ∗ ,
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so that ρ(τ) = ρ∗ is a stationary solution of the evolution equation dρ
dτ

= −gradFρ, so it is
enough to show that if ρ0(τ) and ρ1(τ) are two solutions of the evolution equation then we have
the contraction property

d+

dτ
d(ρ1, ρ0)2 ≤ 2α d(ρ1, ρ0)2.

where d+

dτ
denotes derivative from the right, i.e.

d+

dτ |τ0
f = lim sup

τ↓τ0

f(τ)− f(τ0)

τ − τ0

.

To this end let us fix τ0 and for any τ we let σ 7→ ρ(τ, σ) ∈M be a curve between ρ(τ, 0) = ρ0(τ)
and ρ(τ, 1) = ρ1(τ). We take this to be the curve of least energy at τ = τ0 and continuous in τ
so that

d(ρ1(τ), ρ0(τ)) =

∫ 1

0

∣∣∣∣∂ρ∂σ
∣∣∣∣2 dσ

for any τ , with equality at τ = τ0. This implies in particular that

d+

dτ |τ0
d(ρ1, ρ0)2 ≤ d

dτ |τ0

∫ 1

0

∣∣∣∣∂ρ∂σ
∣∣∣∣2 dσ = 2

∫ 1

0

g

(
∂ρ

∂σ
,
D

dτ |τ0

∂ρ

∂σ

)
dσ.

Interchanging the σ and τ partial derivatives and using the metric property of the covariant
derivative, the above expression is seen to be equal to

2

∫ 1

0

{
d

dσ
g

(
∂ρ

∂σ
,
∂ρ

∂τ |τ0

)
− g

(
D

dσ

∂ρ

∂σ
,
∂ρ

∂τ |τ0

)}
dσ.

Since ρ(σ, τ0) is a curve of least energy, D
dσ

∂ρ
∂σ

= 0 and so the second term is zero and now we
can continue (using the fundamental theorem of calculus) the expression as

2

∫ 1

0

d

dσ
g

(
∂ρ

∂σ
,
∂ρ

∂τ |τ0

)
dσ = 2

[
g

(
dρ

dσ |σ=1
,
dρ1

dτ

)
− g

(
dρ

dσ |σ=0
,
dρ0

dτ

)]
= −2

[
g

(
dρ

dσ |σ=1
, gradF|ρ1

)
− g

(
dρ

dσ |σ=0
, gradF|ρ0

)]
≤ −2α d(ρ0, ρ1)2.

(Note that in the last three lines everything is evaluated at τ0).
Finally, we get that

d

dτ
(e2ατ (F (ρ)− F (ρ∗))) ≤ 0.

Indeed, we already have

lim
τ↑∞

d(ρ, ρ∗) = 0 and lim
τ↑∞
|gradF|ρ| = 0,
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(here of course |gradF|ρ| =
√
g
(
gradF|ρ, gradF|ρ

)
) so using gradF|ρ∗ = 0, we have

|F (ρ)− F (ρ∗)| ≤ |gradF|ρ|d(ρ, ρ∗),

for all ρ ∈M, and hence
lim
τ↑∞

(F (ρ)− F (ρ∗)) = 0.

Now let’s compute:

d

dτ
(F (ρ)− F (ρ∗)) = g

(
gradF|ρ,

dρ

dτ

)
− g

(
gradFρ∗ ,

dρ

dτ

)
= −|gradF|ρ|2

=

∫ ∞
τ

d

dτ
|gradF|ρ|2 dτ

≤ −2α

∫ ∞
τ

|gradF|ρ|2 dτ

= 2α

∫ ∞
τ

d

dτ
(F (ρ)− F (ρ∗)) dτ

= −2α(F (ρ)− F (ρ∗)).

Remark. The explicit computations of the gradient and Hessian will be later used to mimic
the Riemannian calculus in the smooth setting.
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REFERENCES

This is a compilation of notes on the paper [3] by Felix Otto, for a talk in the nonlinear PDE
seminar in F’08 run by I. Kim at UCLA (we thank Inwon for some useful discussions). We
have permuted the order in which some topics appear; in particular, we opted for a complete
description of the geometry of M before stating and deriving the main results. For pedagogical
purposes and convenience, we have been repetitive in some places. We have attempted to offer
more detailed or slightly different explanations of the results in [3] where we can – especially
elaborating a little more on the geometric concepts involved, but on the other hand, some segments
are taken almost verbatim from [3].

Updated circa March, 2012.
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