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1 Smirnov’s Event [1]

For a triangular lattice with mesh δ, we define an event Qα(z), where α ∈ {1, τ, τ2}, z ∈ ω
and τ ≡ exp(2πi

3 ), as an occurrence of a simple path going from the arc a(α)a(τα) to the arc
a(τ2)a(α), and separating z from the arc a(τα)a(τ2α) (see figure 1). We let Hα(z) denote
the probability of Qα(z).

2 Remark 6 [1]

Claim: Suppose

f(z) = A(z) + τB(z) + τ2C(z),

where A, B, C are real-valued functions. Then if

f ′(z) = Ax + τBx + τ2Cx = τ2Aτ + Bτ + τCτ ,

then f satisfies the Cauchy-Riemann equations (and hence is analytic) if

Ax = Bτ , Bx = Cτ , Cx = Aτ ,

where Ax denotes the partial derivative in the x direction and Aτ denotes

lim
ε→0

f(z + ετ)− f(z)
ετ

.

Proof: This is a straightforward computation.
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3 Cauchy-Riemann Equations, Harmonicity and Cauchy’s Theorem

If f(z) = u(z) + iv(z) (u, v real) is analytic, then necessarily

f ′(z)

=
∂u

∂x
+ i

∂v

∂x

= −i
∂u

∂y
+

∂v

∂y
.

This can easily be seen by taking real and then purely imaginary values for h in the def-
inition of the derivative and setting them equal. This gives the Cauchy-Riemann equations

∂u

∂x
=

∂v

∂y
,

∂u

∂y
= −∂v

∂x
.

Given this and using existence and equality of mixed partials, we see that

u and v are harmonic ,

i.e., 4u = uxx + uyy = 0 and similarly for v. We say that v is the conjugate harmonic
function of u.

Conversely, f(z) = u(z) + iv(z) is analytic if u and v are conjugate harmonic functions
satisfying the Cauchy-Riemann equations.

Green’s Theorem states that∫
∂D

f(x, y)dx + g(x, y)dy =
∫ ∫

D

∂g

∂x
− ∂f

∂y
dxdy,

where D is a region in the plane with boundary ∂D.

Now if f is analytic and hence satisfies the Cauchy-Riemann equations, then for D
contained in the region of analyticity, we have by Green’s Theorem∫

∂D
f(z)dz =

∫
∂D

f(z)dx + if(z)dy

=
∫ ∫

D

∂f

∂x
− i

∂f

∂y
dxdy

= 0.

This is exactly Cauchy’s Theorem.
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4 Neumann Condition (Equation (13) in [1])

Claim: Suppose A, B and C are real-valued functions such that

A +
i√
3
(B − C), (4.1) anal1

B +
i√
3
(C −A), (4.2) anal2

and
C +

i√
3
(A−B) (4.3) anal3

are analytic, then
Aη = Bτη, (4.4) conc

where Xx denotes the partial derivative in the x–direction of the function X, τ is a unit
vector pointing at 2πi

3 and τη denotes the vector η rotated by 2π
3 . By the symmetry of

equations (4.1), (4.2) and (4.3) we also get two other such differential conditions.

Proof: Cauchy–Riemann equations imply

Ax =
1√
3
(By − Cy), Ay =

1√
3
(Cx −Bx); (4.5) cauch1

Bx =
1√
3
(Cy −Ay), By =

1√
3
(Ax − Cx); (4.6) cauch2

Cx =
1√
3
(Ay −By), Cy =

1√
3
(Bx −Ax). (4.7) cauch3

Next let η = (η1, η2)T be any unit vector, then

Aη = η1Ax + η2Ay

=
η1√
3

(
By −

1√
3
(Bx −Ax)

)
+

η2√
3

(
1√
3
(Ay −By)−Bx

)
by (4.5) and (4.7). Regrouping terms in the last line, we get

Aη =
1
3
(η1Ax + η2Ay) +

(
η1√
3
− η2

3

)
By +

(
−η1

3
− η2√

3

)
Bx.

So we conclude (
η1√
3
− η2

3

)
By +

(
−η1

3
− η2√

3

)
Bx =

2
3
(η1Ax + η2Ay),
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i.e., (√
3η1

2
− η2

2

)
By +

(
−η1

2
−
√

3η2

2

)
Bx = η1Ax + η2Ay. (4.8) step1

On the other hand, multiplying η by the usual two–dimensional rotation by 2π
3 matrix,

we find that

τη =

(
−η1

2
−
√

3η2

2
,

√
3η1

2
− η2

2

)T

,

so

Bτη =

(
−η1

2
−
√

3η2

2

)
Bx +

(√
3η1

2
− η2

2

)
By.

Comparison with (4.8) now gives (4.4).
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