Notes on Smirnov’s Paper
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1 Smirnov’s Event [1]

For a triangular lattice with mesh J, we define an event Q,(z), where a € {1,7,7%}, z € w

and 7 = exp(%), as an occurrence of a simple path going from the arc a(a)a(ra) to the arc
a(7?)a(a), and separating z from the arc a(ra)a(r?a) (see figure 1). We let H,(z) denote
the probability of Qq(2).

2 Remark 6 [1]
Claim: Suppose

f(2) = A(z) + 7B(2) + 7°C(2),

where A, B, C are real-valued functions. Then if

f/(Z) = Az + 7By + T2C:c = 7—214‘1' + B; +7C5,

then f satisfies the Cauchy-Riemann equations (and hence is analytic) if
Aac = BTvBZ‘ = CT7 Cac = AT7
where A, denotes the partial derivative in the z direction and A, denotes

i LEHer) = f(2)

e—0 €T

Proof: This is a straightforward computation.



3 Cauchy-Riemann Equations, Harmonicity and Cauchy’s Theorem

If f(2) =u(z) +iv(2) (u, v real) is analytic, then necessarily

f(2)
- Oz ox
Ou  Ov

This can easily be seen by taking real and then purely imaginary values for h in the def-
inition of the derivative and setting them equal. This gives the Cauchy-Riemann equations

Ou Ov Ou ov
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Given this and using existence and equality of mixed partials, we see that
u and v are harmonic ,

e., Au = Uzy + uyy = 0 and similarly for v. We say that v is the conjugate harmonic
function of u.

Conversely, f(z) = u(z) + iv(z) is analytic if u and v are conjugate harmonic functions
satisfying the Cauchy-Riemann equations.

Green’s Theorem states that

f(xy)dm+gxydy—/ ———dd
oD Ay
where D is a region in the plane with boundary 9D.

Now if f is analytic and hence satisfies the Cauchy-Riemann equations, then for D
contained in the region of analyticity, we have by Green’s Theorem

/f dz_/ f(z)dx +if(z)dy

This is exactly Cauchy’s Theorem.



4 Neumann Condition (Equation (13) in [1])

Claim: Suppose A, B and C are real-valued functions such that

i
A+ —=(B-0), 4.1
(B-0) (1)
i
B+ —(C — A), 4.2
H(C-4) (+2)
and )
i
C+—=(A-B 4.3
HA-B) (1.3
are analytic, then
Ay = By, (4.4)

where X, denotes the partial derivative in the xz—direction of the function X, 7 is a unit

vector pointing at % and 77 denotes the vector 7 rotated by 2{ By the symmetry of

equations (4.1), (4.2) and (4.3) we also get two other such differential conditions.
Proof: Cauchy—Riemann equations imply

1 1

Ay \/g(By - Cy)7 Ay = %(Cx - B:E)§ (4'5)
1 1

B, = %(Cy —4y), By= E(Ax - Cq); (4.6)
1 1

Cy = %(Ay -B,), C,= E(Bw —Ay). (4.7)

Next let n = (11,12)7 be any unit vector, then

An = 7711417 + 772Ay

= % (By - \%(Bx —Ax)> + % <¢1§<Ay - B,) - Bx>

by (4.5) and (4.7). Regrouping terms in the last line, we get

1
Ay = g(nle +mAy) + <771 — 772) B, + <_771 _ 772) B,.
So we conclude
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i.e.,

Vam m V3
( > o) Bty Ty B mdatmdy (48)
On the other hand, multiplying n by the usual two—dimensional rotation by %’r matrix,
we find that .
o [ V3 VB
" 2 2 2 2>
SO
3 3
By = -1 - V3 gy (Vim e B,.
2 2 2 2
Comparison with (4.8) now gives (4.4). O
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