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Abstract

For the site percolation model on the triangular lattice and certain generalizations

for which Cardy’s Formula has been established we acquire a power law estimate for

the rate of convergence of the crossing probabilities to Cardy’s Formula.

1 Introduction

Starting with the work [14] and continuing in: [6], [17] [10], [4], [5], the validity of

Cardy’s formula [7] – which describes the limit of crossing probabilities for certain

percolation models – and the subsequent consequence of an SLE6 description for the

associated limiting explorer process has been well established. The purpose of this work

is to provide some preliminary quantitative estimates. Similar work along these lines

has already appeared in [3] (also see [12]) in the context of the so–called loop erased

random walk for both the observable and the process itself. Here, our attention will

be confined to the percolation observable as embodied by Cardy’s Formula for crossing

probabilities.

While in the case of the loop erased random walk, estimates on the observable

can be reduced to certain Green’s function estimates, in the case of percolation the

observables are not so readily amenable. Instead of Green’s functions, we shall have

to consider the Cauchy integral representation of the complexified crossing probability

functions, as first introduced in [14]. As demonstrated in [14] (see also [2] and [10]) these
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functions converge to conformal maps from the domain under consideration – where

the percolation process takes place – to the equilateral triangle. Thus, a combination

of some analyticity property and considerations of boundary value should, in principal,

yield a rate of convergence.

However, the associated procedure requires a few domain deformations, each of

which must be demonstrated to be “small”, in a suitable sense. While such consid-

erations are not important for very regular domains (which we will not quantify) in

order to consider general domains, a more robust framework for quantification is called

for. For this purpose, we shall introduce a procedure where all portions of the domain

are explored via percolation crossing problems. This yields a multi–scale sequence of

neighborhoods around each boundary point where the nature of the boundary irregu-

larities determines the sequence of successive scales. Thus, ultimately, we are permitted

to measure the distances between regions by counting the number of neighborhoods

which separate them. This procedure is akin to the approach of Harris [11] in his study

of the critical state at a time when detailed information about the nature of the state

was unavailable.

Ultimately we establish a power law estimate (in mesh size) for the rate of conver-

gence in any domain with boundary dimension less than two. (For a precise statement

see the Main Theorem below.) As may or may not be clear to the reader at this point

the hard quantifications must be done via percolation estimates – as is perhaps not

surprising since we cannot easily utilize continuum estimates before having reached the

continuum in the first place. The plausibility of a power law estimate then follows from

the fact that most a priori percolation estimates are of this form.

Finally, we should mention that this problem is also treated in the posting [15],

which appeared at approximately the same time as (the preliminary version of) the

present work. The estimates in [15] are more quantitative, however, the class of domains

treated therein are restricted. In the present work we make no efforts towards precise

quantification, but we shall treat the problem for essentially arbitrary domains. It

is remarked that convergence to Cardy’s Formula in a general class of domains is,

most likely, an essential ingredient for acquiring a rate of convergence to SLE6 for the

percolation interfaces.
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2 Preliminaries

2.1 The Models Under Consideration

We will be considering critical percolation models in the plane. However in contrast

to the generality professed in [4], [5] – where, essentially, “all” that was required was

a proof of Cardy’s formula, here the mechanism of how Cardy’s formula is established

will come into play. Thus, we must restrict attention to the triangular site percolation

problem considered in [14] and the generalization provided in [10]. These models can

all be expressed in terms of random colorings (and sometimes double colorings) of

hexagons. As is traditional, the competing colors are designated by blue and yellow.

We remind the reader that criticality implies that there are scale independent bounds

in (0, 1) for crossing probabilities – in either color – between non–adjacent sides of

regular polygons. In this work, for the most part, we will utilize crossings in rectangles

with particular aspect ratios.

2.2 The Observable

Consider a fixed domain Ω ⊂ C that is a conformal rectangle with marked points

(or prime ends) A, B, C and D which, as written, are in cyclic order. We let Ωn

denote the lattice approximation at scale ε = n−1 to the domain Ω. The details of the

construction of Ωn – especially concerning boundary values and explorer processes –

are somewhat tedious and have been described e.g., in [5] §3 & §4 and [4] §4.2. For

present purposes, it is sufficient to know that Ωn consists of the maximal union of

lattice hexagons – of radius 1/n – whose closures lie entirely inside Ω; we sometimes

refer to this as the canonical approximation. (We shall also have occasions later to use

other discrete interior approximating domains which are a subset of Ωn.) Moreover,

boundary arcs can be appropriately colored and lattice points An – Dn can be selected.

We consider percolation problems in Ωn.

The pertinent object to consider is a crossing probability: performing percolation

on Ωn, we ask for the crossing probability – say in yellow – from (An, Bn) to (Cn, Dn).

Here and throughout this work, a colored crossing necessarily implies the existence of a

self–avoiding, connected path of the designated color with endpoints in the specified sets
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and/or that satisfies specific separation criteria. Below we list various facts, definitions

and notations related to the observable that will be used throughout this work. In

some of what follows, we temporarily neglect the marked point An and regard Ωn with

the three remaining marked points as a conformal triangle.

◦ Let us recall the functions introduced in [14], here denoted by SB, SC , SD where

e.g., SD(z) with z ∈ Ωn a lattice point, is the probability of a yellow crossing from

(Cn, Dn) to (Dn, Bn) separating z from (Bn, Cn). Note that it is implicitly un-

derstood that the SB, SC , SD–functions are defined on the discrete level; to avoid

clutter, we suppress the n index for these functions. Moreover, we will denote the

underlying events associated to these functions by SB, SC , SD, respectively.

◦ It is the case that the functions SB, SC , SD are invariant under exchange of color

(see [14] and [10]). While it is not essential to the arguments in this work, we

sometimes may take liberties regarding whether we are considering a yellow or

blue version of these functions.

◦ It is also easy to see that e.g., SB has boundary value 0 on (Cn, Dn) and 1 at

the point Bn. Moreover, the complexified function Sn = SB + τSC + τ2SD,

with τ = e2πi/3, converges to the conformal map to the equilateral triangle with

vertices at 1, τ, τ2, which we denote by T. (See [14], [2], [5].)

◦ For finite n, we shall refer to the object Sn(z) as the Carleson–Cardy–Smirnov

function and sometimes abbreviated CCS–function.

◦ We will use Hn : Ωn → T to denote the unique conformal map which sends

(Bn, Cn, Dn) to (1, τ, τ2). Similarly, H : Ω → T is the corresponding conformal

map of the continuum domain.

◦ With An reinstated, we will denote by Cn the crossing probability of the conformal

rectangle Ωn and C∞ its limit in the domain Ω; i.e., Cardy’s Formula in the

limiting domain.

◦ Since SC(An) ≡ 0,

Sn(An) = SB(An) + τ2SD(An) = [SB(An)− 1

2
SD(An)]− i

√
3

2
SD(An).

Now we recall (or observe) that Cn can be realized as SD(An) and so from the

previous display, Cn = − 2√
3
· Im[Sn(An)]. Since it is already known that Sn
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converges to H (see [14], [2], [5]) it is also the case that C∞ = − 2√
3
· Im[H(A)].

Therefore to establish a rate of convergence of Cn to C∞, it is sufficient to show

that there is some ψ > 0 such that

|Sn(An)−H(A)| ≤ Cψ · n−ψ,

for some ψ > 0 and Cψ <∞ which may depend on the domain Ω.

◦ The functions Sn are not discrete analytic but the associated contour integrals

vanish with lattice spacing (see [14], [2] and [10].) In particular, this is exhibited

by the fact that the contour integral around some closed discrete contour Γn

behaves like the length of Γn times n to some negative power. Also, the functions

Sn are Hölder continuous with estimates which are uniform for large n. For details

we refer the reader to Definition 4.1.

Our goal in this work is to acquire the following theorem on the rate of convergence

of the finite volume crossing probability, Cn, to its limiting value:

Main Theorem. Let Ω be a domain and Ωn its canonical discretization. Consider the

site percolation model or the models introduced in [10] on the domain Ωn. In the case

of the latter we also impose the assumption that the boundary Minkowski dimension

is less than 2 (in the former, this is not necessary). Let Cn be described as before.

Then there exists some ψ(Ω) > 0 (which may depend on the domain Ω) such that Cn

converges to its limit with the estimate

|Cn − C∞| . n−ψ,

provided n ≥ n0(Ω) is sufficiently large and the symbol . is described with precision in

Notation 2.1 below.

Notation 2.1 In the above and throughout this work, we will be describing asymptotic

behaviors of various quantities as a function of small or large parameters (usually n in

one form or another). The relation X . Y relating two functions X and Y of large

or small parameters (below denoted by M and m, respectively) means that there exists

a constant c ∈ (0,∞) independent of m and M such that for all M sufficiently large

and/or m sufficiently small X(m,M) ≤ c · Y (m,M).
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Remark 2.2. The restrictions on the boundary Minkowski dimension for the models

in [10] is not explicitly important in this work and will only be implicitly assumed as

it was needed in order to establish convergence to Cardy’s Formula.

Figure 1: In certain conformal rectangles, the crossing probabilities at the discrete level

will be identically 1
2 independent of scale.

Remark 2.3. It would seem that complementary lower bounds of the sort presented

in the Main Theorem are actually not possible. For example, in the triangular site

model, the crossing probabilities for particular shapes are identically 1
2 independently

of n, as is demonstrated in Figure 1.

We end this preliminary section with some notations and conventions: (i) the nota-

tion dist(·, ·) denotes the usual Euclidean distance while the notation dsup(·, ·) denotes

the sup–norm distance between curves; (ii) we will make use of both macroscopic and

microscopic units, with the former corresponding to an ε→ 0 approximation to shapes

of fixed scale and the latter corresponding to n→∞, wherein distances are measured

relative to the size of a hexagon. So, even though analytical quantities are naturally

expressed in macroscopic units, it is at times convenient to use microscopic units when

performing percolation constructions; (iii) we will use a1, a2, . . . to number the powers

of n appearing in the statements of lemmas, theorems, etc. Thus, throughout, n = ε−1.

Constants used in the course of a proof are considered temporary and duly forgotten
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after the Halmos box.

3 Proof of the Main Theorem

Our strategy for the proof of the Main Theorem is as follows: recall that Hn is the

conformal map from Ωn to T (the “standard” equilateral triangle) so that Bn, Cn, Dn

map to the three corresponding vertices, where it is reiterated that Cn corresponds to a

boundary value of Sn. Thus it is enough to uniformly estimate the difference between

Sn and Hn and then the difference between Hn and H.

Foremost, the discrete domain may itself be a bit too rough so we will actually be

working with an approximation to Ωn which will be denoted by Ω�n (see Proposition

3.2). Now, on Ω�n , we have the function S�n associated with the corresponding perco-

lation problem on this domain and, similarly, the conformal map H�n : Ω�n → T. Via

careful consideration of Euclidean distances and distortion under the conformal map,

we will be able to show that both |Sn(An) − S�n (A�n )| (for an appropriately chosen

A�n ∈ ∂Ω�n ) and |H(A)−H�n (A�n )| are suitably small (see Theorem 3.3). Thus we are

reduced to proving a power law estimate for the domain Ω�n .

Towards this goal, we introduce the Cauchy–integral extension of S�n , which we

denote by F�n , so that

F�n (z) :=
1

2πi

˛
∂Ω�

n

S�n (ζ)

ζ − z
dζ.

Now by using the Hölder continuity properties and the approximate discrete ana-

lyticity properties of the Sn’s, we can show that, barring the immediate vicinity of the

boundary, the difference between F�n and S�n is power law small (see Lemma 3.5). It

follows then that in an even smaller domain, Ω♦
n , which can be realized as the inverse

image of a uniformly shrunken version of T, the function F�n is in fact conformal and

thus it is uniformly close to H♦
n , which is the conformal map from Ω♦

n to T (see Lemma

3.9).

Now for z ∈ Ω�n the dichotomy we have introduced is not atypical: on the one

hand, F�n (z) is manifestly analytic but does not necessarily embody the function S�n of

current interest. On the other hand, S�n (z) has the desired boundary values – at least

on ∂Ω�n – but is, ostensibly, lacking in analyticity properties. Already the approximate

discrete analyticity properties permit us to compare F�n to S�n in Ω♦
n . In order to return
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to the domain Ω�n , we require some control on the “distance” between Ω♦
n and Ω�n (not

to mention a suitable choice of some point A♦
n ∈ ∂Ω♦

n as an approximation to A). It

is indeed the case that if Ω♦
n is close to Ω�n in the Hausdorff distance, then the proof

can be quickly completed by using distortion estimates and/or Hölder continuity of the

S function. However, such information translates into an estimate on the continuity

properties of the inverse of F�n , which is not a priori accessible (and, strictly speaking,

not always true).

Further thought reveals that we in fact require the domain Ω♦
n to be close to Ω�n in

both the conformal sense and in the sense of “percolation” – which can be understood as

being measured via local crossing probabilities. (In principle, given sufficiently strong

control on boundary distortion of the relevant conformal maps, these notions should

be directly equivalent; however, we do not explicitly address this question here, as this

would entail overly detailed consideration of domain regularity.)

While with a deliberate choice of a point on the boundary corresponding to A we

may be able to ensure that either one or the other of the two criteria can be satisfied,

it is not readily demonstrable that both can be simultaneously satisfied without some

additional detailed considerations; it is for this reason that we will introduce and utilize

the notion of Harris systems (see Theorem 3.10) in order to quantify the distances

between Ω♦
n and Ω�n .

The Harris systems are collections of concentric topological rectangles (portions of

annuli) of various scales centered on points of ∂Ω�n and heading towards some “central

region” of Ω�n ; they are constructed so that uniform estimates are available for both

the traversing of each annular portion and the existence of an obstructing “circuit” (in

dual colors). This leads to a natural choice of A♦
n : it is a point on ∂Ω♦

n which is in the

Harris system of A�n (i.e., a point in one of the “rings”). Consequently, the distance

between A�n and A♦
n – and other such pairs as well – can be measured vis a counting

of Harris segments (see Lemma 3.12).

Specifically, we will make use of another auxiliary point, A♦n , which is also in the

Harris system centered at A�n , chosen so that it is inside the domain Ω♦
n . The task

of providing an estimate for |S�n (A♦n ) − S�n (A�n )| (and thus also |F�n (A♦n ) − S�n (A�n )|)

is immediately accomplished by the existence of suitably many Harris segments sur-

rounding both A�n and A♦n (see Proposition 3.15). Also, considering n to be fixed,
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the domain Ω�n can be approximated at scales N−1 � n−1 and the estimates derived

from the Harris systems remain uniform in N as N tends to infinity and thus also

immediately imply an estimate for |H�n (A�n )−H�n (A♦n )| (see Proposition 3.14).

At this point what remains to be established is an estimate relating the conformal

map H♦
n , which is defined by percolation at scale n via F�n , and H�n , the “original”

conformal map. It is here that we shall invoke a Marchenko theorem for the triangle T

(see Lemma 3.16): indeed, again considering Ω�n to be a fixed domain and performing

percolation at scales N−1 � n−1, we have by convergence to Cardy’s Formula that

S�n,N (s) → H�n (s) as N → ∞, for all s ∈ ∂Ω♦
n . The inherent scale invariance of the

Harris systems permits us to establish that in fact S�n,N (s) is close to ∂T, uniformly

in N (see Lemma 3.18) and thus, H�n (∂Ω♦
n ) is close to ∂T (in fact in the supremum

norm). Armed with this input, the relevant Marchenko theorem applied at the point

A♦n immediately gives that H�n (A♦n )−H♦
n (A♦n ) is suitably small.

The technical components relating to the Cauchy–integral estimate and the con-

struction of the Harris systems are relegated to Section 4 and Section 5, respectively.

As for the rest, we will divide the proof of the main theorem into three subsections,

corresponding to:

(i) the regularization of the boundary (introduction of Ω�n ) and showing that crossing

probabilities are close for the domains Ω�n ,Ωn & Ω;

(ii) the construction of the Cauchy–integral F�n and of the domain Ω♦
n ;

(iii) the establishment of the remaining estimates needed to show that the domains

Ω♦
n and Ω�n are suitably close, by using the Harris systems of neighborhoods.

3.1 Regularization of Boundary Length

We now introduce the domain Ω�n ⊆ Ωn. The primary purpose of this domain is to

reduce the boundary length of the domain that need be considered; in particular, this

will be pivotal when estimating the discrete analyticity properties of S�n in the next

section.

Definition 3.1. Let 1 > a1 > 0 and consider a square grid whose elements are squares

of (approximately) microscopic size na1 and let Ω�n denote the union of all (hexagons

within the) squares of this grid that are entirely within the original domain Ω.
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We have:

Proposition 3.2 Let Ω ⊆ C be a domain with boundary Minkowski dimension at

most 1 + α′ with α′ ∈ [0, 1], which we write as M(∂Ω) < 1 + α for any α > α′. Then

the domain Ω�n satisfies Ω�n ⊆ Ωn and

|∂Ω�n | . nα(1−a1).

Proof. Since M(∂Ω) < 1 + α we have (for all n sufficiently large) that the number of

boxes required to cover ∂Ω is essentially bounded from above by (n1−a1)1+α which is

then multiplied by 1
n(1−a1) , the size of the box (in macroscopic units). The fact that

Ω�n ⊆ Ωn is self–evident.

Next we will choose A�n , B
�
n , C

�
n , D

�
n ∈ ∂Ω�n by some procedure to be outlined below

and denote by S�n the corresponding CCS–function. Particularly, this can be done so

that the crossing probabilities do not change much:

Theorem 3.3 Let Ω�n ⊆ Ωn with marked boundary points (An, . . . , Dn) be as de-

scribed, so particularly ∂Ω�n is of distance at most n1−a1 from ∂Ωn. Then there is

an A�n as well as B�n , C�n and D�n such that the corresponding S�n satisfies, for some

a2 > 0 and for all n sufficiently large,

|Sn(An)− S�n (A�n )| . n−a2

and, moreover,

|H(A)−H�n (A�n )| . n−a2 .

Remark 3.4. In the case that the separation between An and ∂Ωn is the order of na1

– as is usually imagined – facets of Theorem 3.3 are essentially trivial. However, the

reader is reminded that An could be deep inside a “fjord” and well separated from ∂Ω�n .

In this language, the forthcoming arguments will demonstrate that, notwithstanding,

an A�n may be chosen near the mouth of the fjord for which the above estimates hold.

Proof of Theorem 3.3. For η > 0 and a subset K ⊂ Ω we will denote by Nη(K) the

η–neighborhood of K intersected with Ω. Now let us first choose η sufficiently small

so that

[[B,C,D] ∪N4η(B) ∪N4η(D) ∪N4η(C)] ∩N4η(A) = ∅,

10



where [B,C,D] denotes the closed boundary segment containing the prime endsB,C,D.

Next we assume that n > n◦ where n◦ is large enough so that for all n > n◦,

An ∈ Nη(A) , . . . , Dn ∈ Nη(D). Moreover, Ω�n ∩ Nη(A) 6= ∅ and similarly for Ω�n ∩

Nη(B), . . . ,Ω�n ∩Nη(D). Then, since

0 < dist(([A,B] \Nη(A)), ([D,A] \Nη(A)))

it is assumed that for n > n◦, the above is very large compared with n−(1−a1) and

similarly for the other three marked points. Finally, consider the uniformization map

ϕ : D → Ω. Then taking n◦ larger if necessary, we assert that for all n > n◦, the

distance (in the unit disc) between ϕ−1(Nη(A)) and [ϕ−1(N4η(A))]c satisfies

dist[ϕ−1(Nη(A)), [ϕ−1(N4η(A))]c]� n−
1
2 . (3.1)

We first state:

Claim. For n > n◦,

dist(Nη(A), [Bn, Cn, Dn]) > 0.

Proof of Claim. We note that the pre–image of ∂Ωn under uniformization has the

following property: for n sufficiently large as specified above, consider the pre–image

of the boundary element ϕ−1([An, Bn]). Then starting at ϕ−1(An), once the segment

enters ϕ−1(Nη(Bn)), it must hit ϕ−1(Bn) before exiting ϕ−1(N4η(Bn)).

Indeed, if this were not true, then necessarily there would be three or more crossings

of the “annular region” ϕ−1(N4η(Bn))\ϕ−1(Nη(Bn)). It is noted that all such crossings

– indeed all of ϕ−1(Ωn) – lies within a distance of the order n−1/2 of ∂D. This follows by

standard distortion estimates (see e.g., [13], Corollary 3.19 together with Theorem 3.21)

and the definition of canonical approximation: each point on ∂Ωn is within distance

1/n of some point on ∂Ω. It is further noted, by the final stipulation concerning n◦,

that the separation scale of the above mentioned “annular region” is large compared

with the distance n−1/2.

Envisioning ∂Ω to be the “bottom”, consider now a point on the “topmost” of these

crossings which is well away – compared with n−1/2 – from the lateral boundaries of

the annular region and also the pre–image of its associated hexagon. Since this point is

the pre–image of one on ∂Ωn, the hexagon in question must intersect ∂Ω and therefore
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its pre–image must intersect ∂D. However, in order to intersect ∂D, the pre–image

of the hexagon in question must intersect all the lower crossings, since our distortion

estimate does not permit this pre–image to leave (a lower portion of) the annular region.

This necessarily implies it passes through the interior of Ωn, which is impossible for a

boundary hexagon.

The same argument also shows that once ϕ−1(∂Ωn) exits ϕ−1(N4η(Bn)), it cannot

re–enter ϕ−1(Nη(Bn)) and so must be headed towards ϕ−1(Cn) and certainly cannot

enter ϕ−1(Nη(A)) since

dist(ϕ−1(Nη(A)), ϕ−1([B,C,D] ∪ [N4η(B) ∪N4η(D) ∪N4η(C)]))� n−1/2

by assumption (by the choice of η, it is the case that [B,C,D] ∪ [N4η(B) ∪N4η(D) ∪

N4η(C)] ⊆ [N4η(A)]c from which the previous display follows from Equation (3.1)).

Altogether we then have that dist(ϕ−1(Nη(A)), ϕ−1([Bn, Cn, Dn])) > 0, and so the

claim follows after applying ϕ.

The above claim in fact implies that there exist points Apn ∈ [An, Bn] and Agn ∈

[An, Dn] such that

dist(Apn, A
g
n) <

1

n1−a1

and

dist(Apn, ∂Ω�n ), dist(Agn, ∂Ω�n ) <
1

n1−a1
.

Indeed, consider squares of side length na1 intersecting ∂Ωn which share an edge with

∂Ω�n and have non–trivial intersection with Nη(A), then since ∂Ωn passes through

such boxes, we can unambiguously label them as either an [An, Bn], an [An, Dn] box,

or both, and by the claim there are no other possibilities. Therefore, a pair of such

boxes of differing types must be neighbors or there is at least one single box of both

types, so we indeed have points Apn, A
g
n as claimed. Finally, by the stipulation

1

n1−a1
� dist(([A,B] \Nη(A)), ([D,A] \Nη(A)))

it is clear that these points must lie in Nη(A).

Thus we choose A�n ∈ ∂Ω�n to be any point near the (Apn, A
g
n) juncture (e.g., the

nearest point). Now consider the scale na3 with 1 > a3 > a1. We may surround the

points Apn, A
g
n and A�n with the order of log2 n

a3−a1 disjoint concentric annuli. These
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annuli have the property that the fragment consisting of its intersection with Ωn forms a

conduit between some portion of the [An, Dn] boundary (which need not be connected)

and a similar portion of the [An, Bn] boundary. Moreover, any circuit in the annulus

necessarily provides a path which connects these two portions. Thus the probability

of a blue connected path between [An, Dn] and [An, Bn] within any particular annulus

fragment is no less than the probability of a blue circuit in the corresponding full

annulus, which is uniformly positive. So letting A denote the event that in at least one

of these fragments the desired blue connection occurs, we have

P(A) ≥ 1− n−a4 (3.2)

for some a4 > 0. Similar constructions may be enacted about the Bn, B
�
n ; . . . ;Dn, D

�
n

pairs leading, ultimately, to the events B, . . . ,D (which are analogous to A) with es-

timates on their probabilities as in Eq.(3.2). For future reference, we denote by E the

event A ∩ · · · ∩ D and so P(E) & 1− na4 (by the FKG inequality).

We are now in a position to verify that |Sn(An)− S�n (A�n )| obeys the stated power

law estimate. Indeed, the C–component of both functions vanish identically while

the differences between the other two components amount to comparisons of crossing

probabilities on the “topological” rectangles [An, Bn, Cn, Dn] verses [A�n , B
�
n , C

�
n , D

�
n ].

There are two crossing events contributing to the (complex) function Sn(An) (and

similarly for S�n (A�n )) but since the arguments are identical, it is sufficient to treat one

such crossing event. Thus we denote by Kn the event of a crossing in Ωn by a blue

path between the [An, Dn] and [Bn, Cn] boundaries (the event contributing to SB(An))

and similarly for the event K�n for a blue path in Ω�n . It is sufficient to show that

|P(K�n )− P(Kn)| has an estimate of the stated form.

The greater portion of the following is rather standard in the context of 2D perco-

lation theory so we shall be succinct. The idea is to first “seal” together e.g., An and

A�n (and similarly for B,C,D) by circuits and then perform a continuation of crossings

argument.

Without loss of generality we may assume that S�B(A�n ) > SB(An) since otherwise

the SD functions would satisfy this inequality and we may work with SD instead. For

ease of exposition, let us envision [An, Bn] and [A�n , B
�
n ] as the “bottom” boundaries

and the D,C pairs as being on the “top”.
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Let Γ denote a crossing between [A�n , D
�
n ] and [B�n , C

�
n ] within Ω�n and let ΓK�

n
∈ K�n

denote the event that Γ is the “lowest” (meaning [A�n , B
�
n ]–most) crossing. These events

form a disjoint partition so that P(K�n ) =
∑

Γ P(K�n | ΓK�
n

) · P(ΓK�
n

). From previous

discussions concerning Apn, A
g
n, we have that P(E) ≥ 1 − n−a4 , which we remind the

reader, means that with the stated probability, these crossings do not go into any

“corners” and hence there is “ample space” to construct a continuation.

So let a5 > a1 denote another constant which is less than unity (recall that in

microscopic units, dist(∂Ω�n , ∂Ωn) ≤ na1). Then, to within tolerable error estimate (by

the Russo–Seymour–Welsh estimates) it is sufficient to consider only the crossings Γ

with right endpoint a distance in excess of na5 away from C�n and with left endpoint

similarly separated from D�n .

Let ΓD and ΓC denote these left and right endpoints of Γ, respectively. Consider

a sequence of intercalated annuli starting at the scale na1 – or, if necessary, in slight

excess – and ending at scale na5 (where ostensibly they might run aground at C�n )

around ΓC . A similar sequence should be considered on the left. Focusing on the right,

it is clear that each such annulus provides a conduit between Γ and ∂Ωn that runs

through the [B�n , C
�
n ] boundary of Ω�n . Let γ̄r denote an occupied blue circuit in one

of these annuli and similarly for γ̄` on the left.

The blue circuit γ̄r must intersect Γ and, since e.g., ΓC is at least na5 away from

A�n , D
�
n , these circuits must end on the [D�n , A

�
n ] boundary so that the portion of the

circuit above Γ forms a continuation to ∂Ωn; similar results hold for ΓD and γ̄` and

the crossing continuation argument is complete. As discussed before, we may repeat

the argument for the other crossing event contributing to the S–functions, so we now

have that |Sn(An)− S�n (A�n )| ≤ n−a2 for some a2 > 0, concluding the first half of the

theorem.

The second claim of this theorem, concerning the conformal maps Hn(An) and

H�n (A�n ) in fact follows readily from the arguments of the first portion. In particular,

we claim that the estimate on the difference can be acquired by an identical sequence

of steps by the realization of the fact that the S–function for a given percolative do-

main which is the canonical approximation to a conformal rectangle converges to the

conformal map of said domain to T ([14] , [2], [5]).

Thus, while seemingly a bit peculiar, there is no reason why we may not consider

14



Ωn to be a fixed continuum domain and, e.g., for N ≥ n, the domain Ωn,N to be its

canonical approximation for a percolation problem at scale N−1. Similarly for Ω�n,N .

Of course here we underscore that e.g., A�n , . . . D
�
n are regarded as fixed (continuum)

marked points which have their own canonical approximates A�n,N , . . . D
�
n,N but there is

no immediately useful relationship between them and the approximates An,N . . . Dn,N .

It is now claimed that uniformly in N , with N ≥ n and n sufficiently large the

entirety of the previous argument can be transcribed mutatis mutantis for the perco-

lation problems on Ωn,N and Ω�n,N . Indeed, once all points were located, the seminal

ingredients all concerned (partial) circuits in (partial) annuli and/or rectangular cross-

ings of uniformly bounded aspect ratios and dimensions not smaller than n−1. All such

events enjoy uniform bounds away from 0 or 1 (as appropriate) which do not depend

on the scale and therefore apply to the percolation problems on Ωn,N and Ω�n,N . We

thus may state without further ado that for all N > n (and n sufficiently large)

|Sn,N (An,N )− S�n,N (A�n,N )| . 1

na2
(3.3)

and so |Hn(An)−H�n (A�n )| . n−a2 as well.

Finally, since the relationship between Ωn and Ω is the same as that between Ω�n

and Ωn (both Ωn, Ω�n are inner domains obtained by the union of shapes (squares or

hexagons) of scale an inverse power of n from Ω, Ωn, respectively) the same continuum

percolation argument as above gives the estimate that |Hn(An)−H(A)| ≤ n−a2 .

We remark that the idea of uniform estimates leading to “continuum percolation”

statements will be used on other occasions in this paper.

3.2 The Cauchy–Integral Extension

We will now consider the Cauchy–integral version of the function S�n . Ostensibly this

is defined on the full Ω�n however as mentioned in the introduction to this section, its

major rôle will be played on the subdomain Ω♦
n which will emerge shortly.

Lemma 3.5 Let Ω�n and S�n be as in Proposition 3.2 so that

|∂Ω�n | ≤ nα(1−a1),
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where M(∂Ω) < 1+α. For z ∈ Ω�n (with the latter regarded as a continuum subdomain

of the plane) let

F�n (z) =
1

2πi

˛
∂Ω�

n

S�n (ζ)

ζ − z
dζ. (3.4)

Then for a1 sufficiently close to 1 there exists some β > 0 and some a5 > 0 such that

for all z ∈ Ω�n (meaning lying on edges and sites of Ω�n ) with dist(z, ∂Ω�n ) > n−a5 it is

the case that ∣∣S�n (z)− F�n (z)
∣∣ . n−β.

The proof of this lemma is postponed until Section 4.2 and we remark that while

S�n is only defined on vertices of hexagons a priori, it can be easily interpolated to be

defined on all edges, as discussed in Section 4. We will now proceed to demonstrate

that F�n is conformal in a subdomain of Ω�n . Let us first define a slightly smaller

domain:

Definition 3.6. Let Ω�n be as described. Let a5 > 0 be as in Lemma 3.5 and define,

for temporary use,

Ω}n := {z ∈ Ω�n : dist(z, ∂Ω�n ) ≥ n−a5}.

We immediately have the following:

Proposition 3.7 For n sufficiently large, there exists some β > a3 > 0 (with β as in

Lemma 3.5) such that

dsup(F�n (∂Ω}n ), ∂T) . n−a3 .

Here dsup denotes the supremum distance between curves, i.e.,

dsup(γ1, γ2) = inf
ϕ1,ϕ2

sup
t
|γ1(ϕ1(t))− γ2(ϕ2(t))|,

where the infimum is over all possible parameterizations.

Proof. Let us first re–emphasize that S�n maps ∂Ω�n to ∂T. This is in fact fairly well

known (see e.g., [2] or [5], Theorem 5.5) but a quick summary proceeds as follows: by

construction S�n is continuous on ∂Ω�n and e.g., takes the form λτ + (1− λ)τ2 on one

of the boundary segments, where λ represents a crossing probability which increases

monotonically – and continuously – from 0 to 1 as we progress along the relevant

boundary piece. Similar statements hold for the other two boundary segments.
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Now by Lemma 3.5, F�n (z) is at most the order n−β away from S�n (z) for any

z ∈ ∂Ω}n , so the curve F�n (∂Ω}n ) is in fact also that close to S�n (∂Ω}n ) in the supremum

norm. Finally, by the Hölder continuity of S�n up to ∂Ω�n (see Proposition 4.3) and

the fact that ∂Ω}n is a distance which is an inverse power of n to ∂Ω�n , it follows that

S�n (∂Ω}n ) is also close to ∂T and the stated bound emerges.

Equipped with this proposition, we can now introduce the domain Ω♦
n :

Definition 3.8. Let a4 > 0 be such that β > a3 > a4 (with a3 > 0 as in Proposition

3.7) and let us denote by

T♦ = (1− n−a4) · T

the uniformly shrunken version of T. Finally, let

Ω♦
n := (F�n )−1(T♦)

and denote by (B♦
n , C

♦
n , D

♦
n ) the preimage of (1− n−a4) · (1, τ, τ2) under F�n .

The purpose of introducing Ω♦
n is illustrated in the next lemma:

Lemma 3.9 Let F�n and Ω♦
n , etc., be as described. Then F�n is conformal in Ω♦

n .

Next let H♦
n : Ω♦

n −→ T be the conformal map which maps (B♦
n , C

♦
n , D

♦
n ) to (1, τ, τ2).

Then for all z ∈ Ω♦
n ,

|F�n (z)−H♦
n (z)| . n−a4 .

Proof. Since F�n is manifestly holomorphic in order to deduce conformality it is only

necessary to check that it is 1–to–1. Let Kn := F�n (∂Ω}n ) and let us start with the

following observation on the winding of Kn:

Claim. If w ∈ T♦, then the winding of Kn around w is equal to one:

W (Kn, w) =
1

2πi

ˆ
Kn

dz

z − w
= 1.

Proof of Claim. The result is elementary and is, in essence, Rouché’s Theorem so

we shall be succinct and somewhat informal. Foremost, by continuity, the winding is

constant for any w ∈ T♦. (This is easily proved using the displayed formula and the

facts that the winding is integer valued and that Kn is rectifiable.) Clearly, since ∂T
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and Kn are close in the supremum norm, it follows, by construction that ∂T♦ and Kn

are also close in this norm.

Let zK(t) and z♦(t), 0 ≤ t ≤ 1 denote counterclockwise moving parameterizations

of Kn and ∂T♦ that are uniformly close. For z♦, this starts and ends on the positive

real axis and we let θ♦(t) denote the evolving argument of z♦(t) (with respect to the

origin as usual): 0 ≤ θ♦(t) ≤ 2π. We similarly define θK(t): in this case, we stipulate

that |θK(0)| is as small as possible – and thus approximately zero – but of course

θK(t) evolves continuously with zK(t) and therefore ostensibly could lie anywhere in

(−∞,∞). But |z♦(t)| and |zK(t)| are both of order unity (and in particular not small)

and they are close to each other. So it follows that |θ♦(t)− θK(t)| must be uniformly

small, e.g., within some ϑ with 0 < ϑ� π for all t ∈ [0, 1]. Now, since θ♦(1)− θ♦(0) =

2π, we have

|W (Kn, 0)− 1| =
∣∣∣∣θK(1)− θK(0)

2π
− θ♦(1)− θ♦(0)

2π

∣∣∣∣ ≤ 2ϑ

2π
� 1,

so we are forced to conclude that W (Kn, 0) = 1 by the integer–valued property of

winding. The preceding claim has been established.

The above implies that F�n is in fact 1-1 in Ω♦
n : from Definition 3.8 we see that a4

is chosen so that (for n sufficiently large) n−a4 is large compared with n−a3 (from the

conclusion of Proposition 3.7) so that Kn (which is clearly a continuous and possibly

self–intersecting curve) lies outside T♦. Now fix some point ξ ∈ Ω♦
n and consider the

function hξ(z) := F�n (z) − F�n (ξ). Next parametrizing ∂Ω�n := γ as γ : [0, 1] → C,

noting that F�n (ξ) ∈ T♦ and using the chain rule we have that

1 = W (Kn, F
�
n (ξ)) =

1

2πi

˛
F�
n ◦γ

1

ζ − F�n (ξ)
dζ

=
1

2πi

ˆ 1

0

(F�n )′(γ(t))γ′(t)

F�n (γ(t))− F�n (ξ)
dt =

1

2πi

˛
γ
h′ξ/hξ dz.

By the argument principle, the last quantity is equal to the number of zeros of hξ in

the region enclosed by γ, i.e., in Ω�n . The desired 1–to–1 property is established.

We have now that F�n |Ω♦
n

is analytic and maps Ω♦
n in a one–to–one fashion onto

T♦. Therefore F�n |Ω♦
n

is the conformal map from Ω♦
n to T♦ (mapping B♦

n , C
♦
n , D

♦
n to

(1−n−a4)·(1, τ, τ2), the corresponding vertices of T♦). Thus by uniqueness of conformal

maps we have that H♦
n = 1

1−n−a4
·
(
F�n |Ω♦

n

)
and the stated estimate immediately

follows.
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3.3 Harris Systems

We will now introduce the notion of Harris systems; proofs will be postponed until

Section 5.

Theorem 3.10 (Harris Systems.) Let Ω�n ⊆ Ω be as described with marked boundary

points (prime ends) A,B,C,D ∈ ∂Ω and let z be an arbitrary point on ∂Ωn. Further,

let 2∆ denote the supremum of the side–length of all circles contained in Ω, and let

D∆ denote a circle of side ∆ with the same center as a circle for which the supremum

is realized.

Then there exists some Γ > 0 such that for all n ≥ n(Ω) sufficiently large, the

following holds: around each boundary point z ∈ ∂Ω�n there is a nested sequence of

at least Γ · log n neighborhoods the boundaries of which are segments (lattice paths)

separating z from D∆. We call this sequence of segments the Harris system stationed

at z. The regions between these segments (inside Ω�n ) are called Harris ring fragments

(or just Harris rings).

Further, there exists some 0 < ϑ < 1/2 such that in each Harris ring, the probability

of a blue path separating z from D∆ is uniformly bounded from below by ϑ.

Also, let J denote the d∞–distance (see the definitions in Subsection 5.2) between

successive segments forming a Harris ring – of course, J depends on the particulars of

the ring under consideration – and let B > 0 be such that the probability of a hard way

crossing of a B by 1 topological rectangle (in both yellow and blue; see Proposition 5.3)

is less than ϑ2. The following properties hold:

1. for r > 0 sufficiently large (particularly, 2−r < B−1) the Harris rings can be tiled

with boxes of scale 2−2r ·J and there is an aggregation of full boxes (unobstructed

by the boundary of the domain) which connect the segments forming the Harris

rings;

2. successive segments Y, YQ satisfy

B−1 · J ≤ ‖Y ‖∞ ≤ 22r+1(κB) · J, B−1 · J ≤ ‖YQ‖∞ ≤ κB · J,

where e.g., ‖Y ‖∞ denotes the diameter of the segment Y ;

3. let a be a point in the Harris system centered at A�n such that the number of

Harris rings between a and D∆ is of order log n. Let A(a) denote the event of a
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blue (or yellow) path surrounding both a and A�n with endpoints on [A�n , B
�
n ] and

[D�n , A
�
n ]. Then there exists some constant λ > 0 such that

P(A(a)) ≥ 1− n−λ;

similar estimates hold at the points B�n , C
�
n , D

�
n and hence the estimate also holds

for the intersected event, by FKG type inequalities (or just independence);

4. finally, all estimates are uniform in lattice spacing in the sense of considering Ω�n

to be a fixed domain and performing percolation at scale N−1.

Proof. The constructions required for the establishment of this theorem is the content

of Section 5. That there exists at least of order log n such neighborhoods follows from

the fact that each point on ∂Ω�n is a distance at least ∆ from D∆ and so proceeding

“directly” towards D∆ and increasing the scale each time by the maximum allowed

while fixing the aspect ratio already leads to of order log n such neighborhoods.

As for the various statements, items 1, 2 are consequences of the full Harris con-

struction (see Subsection 5.4); item 3 follows from Lemma 5.14 and item 4 is a direct

consequence of the fact that at criticality, crossing probabilities of rectangles with

bounded aspect ratios remain bounded away from 0 and 1 uniformly in lattice spac-

ing.

Let us start with the quantification of the “distance” between the corresponding

marked points of Ω♦
n and Ω�n :

Proposition 3.11 B♦
n is in the Harris system stationed at B�n . Moreover, there

exists some κ > 0 such that there are at least κ · log n Harris rings from this Harris

system which enclose B♦
n . Similar statements hold for C♦

n , D
♦
n .

Proof. The argument that B♦
n is indeed in the Harris system stationed at B�n and the

argument that there are many Harris rings enclosing B♦
n are essentially the same.

First we have that by Lemma 3.5 and Definition 3.8 that e.g., |S�B(B♦
n )| & 1 −

n−a4 − n−β & 1 − n−a4 . (Recall that β > a3 > a4 and S�B(B♦
n ) is the probability of

a yellow crossing from (B�n , C
�
n ) to (D�n , B

�
n ) separating B♦

n from (C�n , D
�
n ).) On the

other hand, let us consider the “last” Harris ring separating B♦
n from B�n which forms

a conduit between [D�n , B
�
n ] and [B�n , C

�
n ], c.f., Theorem 3.10, item 3; we may enforce

20



Figure 2: Preliminary circuit element “inside” B♦
n plus connection to [C�

n , D
�
n ] boundary

– first via intermediate scales then to the vicinity of D∆ and the rest by large–scale events

– prevents the occurrence of of the yellow circuit described. If there are fewer than γ log n

intermediate scales then this circuit would have substantive probability.
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Figure 3: Case 3 of Lemma 3.12: if the box containing s is separated from the main

percolating cluster of full boxes (of scale 2−2r ·J) associated with its ring by a partial box

then, necessarily, z could not be the point on ∂Ω�
n which is closest to s.

a crossing in this conduit with probability ϑ (as in Theorem 3.10) and then via a box

construction and a “large scale” crossing (as appears below in the proof of Lemma 3.12)

the said crossing can be connected to [C�n , D
�
n ] in blue. This construction procedure is

illustrated in Figure 2. Therefore, if the number of Harris rings enclosing B♦
n were less

than γ · log n, then there would be some V > 0 such that the journey from the vicinity

of B♦
n to [C�n , D

�
n ] can occur at a probabilistic cost in excess of n−γV .

Since such a blue connection renders a yellow version of the event S�B(B♦
n ) impos-

sible, we conclude that there must be more than a4/V Harris rings enclosing B♦
n , for

n sufficiently large. Similar arguments yield the result also for C♦
n , D

♦
n .

More generally, we have the following description of the distance between ∂Ω�n and

∂Ω♦
n :

Lemma 3.12 Let s ∈ ∂Ω♦
n and z ≡ z(s) the point on ∂Ω�n which is closest to s (in

the Euclidean distance). Then there exists some κ > 0 such that in the Harris system

stationed at z, there are at least κ · log n Harris rings that enclose s.
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Proof. Let us set λ := dist(s, z). First, logically speaking, we must rule out the pos-

sibility that s is outside the Harris system stationed at z altogether: if this were true,

then it would imply that dist(s, ∂Ω�n ) = λ > 1
2∆ (since Harris circuits plug into ∂Ω�n

the point s can only be outside the Harris system at z altogether if it is “beyond” the

last Harris segment which parallels ∂D∆; see Theorem 3.10) which then readily implies

that all of the S–functions are of order unity: indeed, in this case S�B(s), S�C (s) and

S�D(s) can all be bounded from below by large scale events of order unity (consider

e.g., the crossing of a suitable annulus whose aspect ratio is order unity with s on the

boundary of the inner square and the outer square touching ∂Ω�n (from inside Ω�n )

together with yet another couple of crossings from the inner square of this annulus to

a larger rectangle which encloses all of Ω�n ) which would place s well away from the

boundary of Ω♦
n by Definition 3.8 and Lemma 3.5. Thus s is in a Harris ring of z.

If the separation – measured in number of Harris rings – between s and D∆ is not

so large, then we will show that |S�n (z)| is larger than a small inverse power of n. We

will accomplish this by constructing configurations which lead to the occurrence of all

three events corresponding to S�B , S
�
C , S

�
D with sufficiently large probability. To this

end we will make detailed use of the Harris system.

Let J denote the separation distance of the Harris segments which form the ring

containing s and let r > 0 be as given in Theorem 3.10. Now note that if the statement

of the lemma were false, then there would be an abundance of Harris rings separating

z from s, which will enable us to construct a path “beneath” s to yield the events

S�B,S�C ,S�D. Consider the boxes of size 2−2r ·J which grid the ring containing s. Let us

observe that there are three cases: 1) the main type, s is contained in a full box which

is connected to the cluster which percolates through the ring (see Theorem 3.10, item

1); 2) the partial type, meaning that s is in a partial box, i.e., a box intersected by ∂Ω�n ;

3) s is in a full box which is separated from the cluster of main types of percolating

boxes by a partial box.

Let us rule out the possibility of 2) and 3). Case 2) is impossible since it implies

that dist(s, z) = dist(s, ∂Ω�n ) ≤ 2−2r · J which (see Theorem 3.10, items 1 and 2)

necessarily implies that z and s are in the same ring. But, supposing they do reside in

the same ring then with probability in excess of (some constant times) 1 − n−Γ, with

Γ as in Theorem 3.10, the occurrence or not of the events contributing to S�B , S
�
C , S

�
D
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would be the same for both s and z (c.f., the proof of Proposition 3.15 below). Then

by Lemma 3.5 and Definition 3.8, it would the case that |S�n (z)−S�n (s)| & n−a4−n−β,

which is a contradiction if a4, β are appropriately chosen relative to Γ.

Similar reasoning shows that 3) is also not possible: indeed, since z is the closest

point to s, z and s must lie along a straight line segment which lies in Ω�n and this

segment must pass through the partial box in question (i.e., the “bottleneck”; we

emphasize here that we are considering the Harris system centered at z) which separates

s from the connected component of boxes which percolate through the ring. From

previous considerations regarding 2−2rJ (the scale of the boxes) versus dist(s, z), it is

clear that there is a point on ∂Ω�n within this partial box which is closer to s than z,

a contradiction. These considerations are illustrated in Figure 3.

Thus, we find s in the main percolating component of boxes. For convenience, we

focus on the sub–case where the box containing s is separated from ∂Ω�n by at least

one layer of full boxes. Indeed, the complementary sub–cases are easily handled by

arguments similar to those which dispensed with cases 2) and 3).

We shall now proceed to construct, essentially by hand, any of the events S�B(s),

S�C(s) or S�D(s) corresponding to the functions S�B , S
�
C , S

�
D, respectively, with “unac-

ceptably large” probability.

It is understood that the constructions that follow utilize the main body of boxes

percolating through a given Harris ring fragment, as detailed in Theorem 3.10, item 1.

Ultimately we will be constructing two (disjoint) paths. E.g., for the S�B(s) event, one

path from the vicinity of s to the [B�n , C
�
n ] boundary and the other from the vicinity of

s to the [D�n , B
�
n ] boundary. While not strictly necessary, it is slightly more convenient

to construct the “bulk” of both paths at once. Therefore, we shall undertake a double

bond construction. For further convenience, we will base our construction on 3 × 1

bond events which will be described in the next paragraph.

We remark, again, that arguments of this sort have appeared before, e.g., at least

as far back as [1], so we will be succinct in our descriptions. The events are described

as follows: let us assume, for ease of exposition, that three neighboring boxes form

a horizontal 3 × 1 rectangle. The bond event – in yellow – would then consist of two

disjoint left–right yellow crossings of the 3×1 rectangle together with two disjoint top–

bottom yellow crossings in each of the outer two squares, as is illustrated in Figure 4,
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it is seen that if a pair of such rectangles overlap on an end–square, and the bond event

occurs for both of them, then, regardless of the orientations, there are two disjoint

yellow paths which transmit from the beginning of one to the end of the other. I.e.,

these “bonds” have the same connectivity properties as the bonds of Z2 and provide

us with double paths.

Starting with the square containing s we may suppose there is (or construct) a

yellow ring in the eight boxes immediately surrounding and encircling this square.

Via the bond events just described, we connect this encircling ring to the outward

boundary of the Harris annulus to which s belongs. Each of these events – which are

positively correlated – incurs a certain probabilistic cost. However, it is observed, with

emphasis, that since the relative scales of the Harris ring and the bonds used in the

construction are fixed independent of the actual scale, the cost may be bounded by a

number independent of the actual scale.

Similarly, we may use the bonds to acquire a double path across the next (outward)

ring and the two double paths may be connected to form a continuing double path by

explicit use of a “patch” consisting of the smaller of the two bond types. Again, since

the ratio of scales of (boxes of) successive Harris rings are uniformly bounded above

and below, the probabilistic cost does not depend on the actual scale. The procedure

of double crossing via bond events and patches can be continued till the boundary of

D∆ is reached; thereupon, treating D∆ and its vicinity as an annulus in its own right,

the two paths can be connected to separate boundaries at an additional cost of order

unity.

Now let us assume for the moment that s ∈ [B♦
n , C

♦
n ], so that by Lemma 3.5 and

Definition 3.8 it is the case that S�D(s) ≤ C · (n−a4 + n−β) for some constant C > 0,

so denoting by e−V (for some V > 0) the uniform bound on the cost of one patch

and one annular crossing via the double bonds, if κ > 0 is sufficiently small so that

e−κV logn = n−κV > C · (n−a4 + n−β), then it is not possible that s ∈ [B♦
n , C

♦
n ]. By

cyclically permuting the relevant B,C,D labels, the cases where s ∈ [C♦
n , D

♦
n ] and

s ∈ [D♦
n , B

♦
n ] follow similarly.

The ensuing arguments will require an auxiliary point somewhat inside Ω♦
n , which

we will denote A♦n :
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Figure 4: Two pairs of disjoint left–right crossings in successive overlapping 3× 1 blocks

together with two disjoint top–bottom crossings in the common square allow for the con-

tinuation of two disjoint paths. Not all crossings described in the bond event are shown.

Note, as illustrated in the insert that, in the case of right angle continuations, the addi-

tional paths in the overlap block are superfluous.

Definition 3.13. Let Ω�n ,Ω
♦
n , etc., be as described. Let η > 0 be a number to be

specified in Proposition 3.14. Then we let A♦n be a point in the Harris ring of the

Harris system stationed at A�n which is separated from D∆ by η · log n Harris segments.

Moreover, A♦n is in the center of a box which belongs to the connected component of

the boxes which percolate through the relevant ring (see the description in Theorem

3.10, item 1) as in the proof of Lemma 3.12.

Proposition 3.14 There exists some η > 0 such that if A♦n is as in Definition 3.13,

then there exists some γ > 0 such that

1. |S�n (A�n )− S�n (A♦n )| . n−γ;

2. |H�n (A�n )−H�n (A♦n )| . n−γ;

In particular, with appropriate choice of γ, A♦n is strictly inside Ω♦
n .

Proof. First let us establish item 1. It is claimed that for any configuration in which the

event A(A♦n ) – of a blue circuit connecting [D�n , A
�
n ] to [A�n , B

�
n ] which surrounds both

A�n and A♦n (as described in Theorem 3.10, item 3) – occurs, the indicator function of
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the yellow version of S�n (A�n ) is equal to that of S�n (A♦n ). Indeed, for the S�C–component,

which always vanishes for A�n , the requisite event in yellow is directly obstructed by

the blue paths of A(A♦n ). As for the rest, for either of the differences in the B or D

components to be non–zero, there must be a long yellow path separating A�n from A♦n

heading to a distant boundary, but this separating path is preempted by the blue event

A(A♦n ). We may thus conclude that

E(|IS�n (A�
n ) − IS�n (A♦n )| | A(A♦n )) = 0 (3.5)

(where I(•) denotes the indicator) which together with Lemma 3.12 and Theorem 3.10,

item 3 gives the result.

As for item 2, recalling the discussion near the end of the proof of Theorem 3.3,

we may consider Ω�n to be a fixed continuum domain and, e.g., for N ≥ n, the domain

Ω�n,N to be its canonical approximation (together with appropriate approximations for

the marked points A�n , B
�
n , etc.) for a percolation problem at scale N−1. We will

consider the corresponding CCS–functions S�n,N on the domains Ω�n,N .

Let us now argue that the arguments for item 1 persist, uniformly, for all N suf-

ficiently large. First, it is emphasized that all the results follow from the occurrence

of paths in each Harris ring, which has probability uniformly bounded from below.

We claim that this remains the case for percolation performed at scale N−1. Indeed,

while the scales of the Harris rings were constructed existentially to ensure uniform

bounds on crossings at scale n−1, it is recalled that these rings are gridded by boxes of

scale 2−2r relative to the rings themselves (see Theorem 3.10, item 1). Thence, using

uniform probability crossings in squares/rectangles, etc., the necessary crossings can

be constructed by hand as in e.g., the proof of Lemma 3.12.

For the last statement, we invoke an argument similar to that in the proof of Lemma

3.12. Recapitulating the construction, we acquire a lower bound on the probability of

occurrence of any of the events associated with the S–functions for A♦n . Finally, since

S�n is close to F�n by Lemma 3.5 the latter of which is used to define ∂Ω♦
n , with an

appropriate choice of power of n (i.e., γ) A♦n can be placed in the interior of Ω♦
n .

Proposition 3.15 There exists some a5 > 0 such that

|F�n (A♦n )− S�n (A�n )| ≤ n−a5 .
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Proof. This follows immediately from Proposition 3.14, item 1 and Lemma 3.5.

Finally, we will need a result concerning the conformal maps H♦
n and H�n . First we

state a distortion estimate:

Lemma 3.16 Let ε > 0 and let K ⊆ T be a domain whose boundary is a Jordan curve

such that the sup–norm distance between ∂K and ∂T is less than ε. We consider K to

be a conformal triangle with some marked points KB,KC ,KD such that |KB − 1| < ε,

|KC − τ | < ε, |KD − τ2| < ε, and let gK denote the conformal map from K to T

mapping (KB,KC ,KD) to (1, τ, τ2). Then for z ∈ K it is the case that

|gK(z)− z| . [ε · log(1/ε)]1/3.

Proof. The result for the disk (without the power of 1/3) is a classical result going back

to Marchenko (for a statement see [16], Section 3) and of course, we can transfer our

hypotheses to the disk by applying a conformal map φ, which maps T to the unit disk

such that φ(0) = 0. The map φ does not increase the distances, because it is smooth

up to the boundary everywhere but at 1, τ , and τ2, where it behaves locally like ε3,

which in fact only decreases the distances.

We are almost in a position to directly apply Marchenko’s Theorem except for a few

caveats. First of all Marchenko’s Theorem requires a certain geometric condition on

the tortuosity of the boundary of K, which is manifestly satisfied under the assumption

that ∂K and the boundary of the triangle are close in the sup–norm distance.

Secondly, Marchenko’s Theorem is stated for some map fK with fK(0) = 0 and

f ′K(0) > 0, and we have a possibly different normalization. Specifically, we have some

map GK : φ(K) → D so that φ−1 ◦ GK ◦ φ = gK , so it suffices to check that GK has

approximately the correct normalizations (indeed, the conformal self–map of the unit

disc mapping a point a to the origin takes the form eiθ ·
(
z−a
1−āz

)
).

Since φ(0) = 0 and 1+τ +τ2 = 0 it is the case that φ−1((1− ε) ·φ(KB +KC +KD))

is close to 0 and also close to w := φ−1((1−ε) ·φ(KB))+φ−1((1−ε) ·φ(KC))+φ−1((1−

ε) · φ(KD)); since it is also the case that gK(KB) + gK(KC) + gK(KD) is close to 0,

we have that GK(w) is close to 0. So we now have that GK(z) is close to some eiθz

for some fixed θ. But since φ(KB) is close to φ(1), and so z0 := φ−1((1− ε)φ(KB)) is

close to both 1 and e−iθ ·GK(1), it follows that |eiθ − 1| . ε · log(1/ε).
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Finally, in transferring the result back to the triangle, the behavior near the vertices

of the triangle requires us to replace the distances by their cube roots.

Remark 3.17. We remark that for our purposes, we can in fact avoid the fractional

power: indeed, we shall only use this result at the point A♦n , which we remind the

reader is chosen to be in the Harris system stationed at A�n and by Lemma 5.14 we

may assert that it is within a fixed small neighborhood of A�n and therefore outside

fixed neighborhoods of the other marked points.

Lemma 3.18 There exists some a6 > 0 such that for all n sufficiently large,

|H♦
n (A♦n )−H�n (A♦n )| . n−a6 .

Proof. Denoting by Gn the conformal map mapping H�n (Ω♦
n ) to T with the points

(H�n (B♦
n ), H�n (C♦

n ), H�n (D♦
n )) mapping to the points (1, τ, τ2), we have by uniqueness

of conformal maps that

H♦
n = Gn ◦H�n .

The stated result will follow from Lemma 3.16, and in order to utilize this lemma, we

need to verify that (H�n (B♦
n ), H�n (C♦

n ), H�n (D♦
n )) is close to (1, τ, τ2) and to show that

the sup–norm distance between ∂[H�n (∂Ω♦
n )] and ∂T is less than n−γ for some γ > 0.

The first statement is a direct consequence of Proposition 3.11: since O(log n) Harris

rings surround both B♦
n and B�n , by an argument as in the proof of Proposition 3.14,

their S�n values differ by an inverse power of n and the result follows since S�n (B�n ) ≡ 1;

similar arguments yield the result for C♦
n , D

♦
n .

As for the second statement, first we have by Lemma 3.5 and Lemma 3.9 that the

distance between ∂[S�n (∂Ω♦
n )] and ∂T is less than (some constant times) n−a4 + n−β;

we emphasize that here we in fact have closeness in the sup–norm since both lemmas

yield pointwise estimates. Next, as near the end of the proof of Theorem 3.3, we may

consider Ω�n to be a fixed continuum domain and, e.g., for N ≥ n, the domain Ω�n,N

to be its canonical approximation (together with appropriate approximations for the

marked points A�n , B
�
n , etc.) for a percolation problem at scale N−1. We will consider

the corresponding CCS–functions S�n,N on the domains Ω�n,N .

We claim that there exists some γ > 0 such that uniformly in N for N sufficiently

large, the sup–norm distance between ∂[S�n,N (∂Ω♦
n )] and ∂T is less than n−γ . Indeed,
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from Lemma 3.12, we know that for each point s on ∂Ω♦
n , there are κ · log n Harris

rings stationed at z(s) which separate it from the central region D∆. While by fiat

S�n,N=n(∂Ω♦
n ) is close to ∂T, we shall reprove this using the Harris systems since we

require an estimate which is uniform in N . We start with the following observation

concerning the central region D∆:

Claim. For n sufficiently large, with probability of order unity independent of n, there

are monochrome percolative connections (in blue or yellow) between D∆ and any or

all of the three boundary segments.

Proof of Claim. Consider the domain Ω with marked points B,C,D, viewed as a

conformal triangle. It is recalled that D∆ is roughly half the size of the largest circle

which can be fit into Ω. Let us focus on two of the three marked points, say B and D.

We now mark two boundary points on D∆ and denote them by b and d and consider two

disjoint curves which join B to b and D to d, thereby forming a conformal rectangle.

Since the aspect ratio of the said rectangle is fixed, it therefore follows, by convergence

to Cardy’s Formula, that for n sufficiently large, there is a uniform lower bound on

the probability of a discrete realization of the desired connection. Similar arguments

apply to the other two boundary segments.

Claim. Consider s ∈ ∂Ω♦
n and the Harris rings from the Harris system stationed at

z(s) ∈ ∂Ω�n which also enclose s as in Lemma 3.12. Without loss of generality, we may

assume that z(s) ∈ [B�n , D
�
n ]. Then there exists some fixed constant Υ <∞ such that

all but Υ of the Harris segments have at least one endpoint on [B�n , D
�
n ]. Moreover,

among these, either the other endpoint of the Harris segment is also on [B�n , D
�
n ] or

the existence of the corresponding path event within this Harris segment achieves S�B
or S�D (which, we remind the reader, are the percolation events defining S�D and S�B ,

respectively) for both s and z(s). Similar statements hold if z belongs to the other

boundary segments.

Proof of Claim. Let us first rule out the possibility that too many Harris segments have

endpoints on [B�n , C
�
n , D

�
n ]. It is noted that each Harris segment of this type in fact

separates all of [B�n , D
�
n ] from D∆. Thus, if there are say Υ such Harris segments, then

the probability of a connection between D∆ and [B�n , D
�
n ] would be less than (1−ϑ)Υ,

30



with ϑ > 0 as in Theorem 3.10. It follows from the previous claim that Υ cannot scale

with n.

Finally, if there are too many Harris segments with one endpoint on [B�n , D
�
n ],

but accomplishes neither S�B nor S�D, then necessarily the other endpoint must be

on [B�n , C
�
n ] or [C�n , D

�
n ] in such a way that the Harris segment separates D∆ from

[B�n , C
�
n ] or [C�n , D

�
n ]. The same reasoning as in the above paragraph then implies

that this also cannot occur “too often”. For illustrations of some of these cases, see

Figure 5.

We also note that there cannot be Harris segments of conflicting “corner types”

(e.g., [D�n , B
�
n ] to [B�n , C

�
n ] and [B�n , C

�
n ] to [C�n , D

�
n ]) since the Harris segments are

topologically ordered and cannot intersect one another.

We can now acquire the needed conclusion that the Harris rings themselves force

S�n,N (s) to be close to ∂T. The essence of the argument can be captured by the

(redundant) case N = n, so let us proceed. Consider then s ∈ ∂Ω♦
n and the Harris

system stationed at z(s) ∈ ∂Ω�n as above which, without loss of generality, we assume

to be in [B�n , D
�
n ]. Then we claim that |S�n (z(s)) − S�n (s)| . n−κ. Indeed, from the

previous claim, all but Υ of the Harris segments have beginning and ending points on

∂Ω�n which are such that conditioned on the existence of paths of the appropriate color

within these segments, the indicator functions of all S�n –events are the same value for

both s and z(s).

Let us now argue that the above argument persists, uniformly, for all N sufficiently

large. First, it is emphasized that all arguments follow from the occurrence of paths in

each Harris ring, which has probability uniformly bounded from below. We claim that

this remains the case for percolation performed at scale N−1. Indeed, let us again recall

that these rings are gridded by boxes of scale 2−2r relative to the rings themselves (see

Theorem 3.10) and using uniform probability of crossings in squares/rectangles, etc.,

which is characteristic of critical 2D percolation problems, the necessary crossings can

be constructed by hand as in e.g., the proof of Lemma 3.12.

Now by convergence to Cardy’s Formula (or rather, the statement that the CCS–

function converges uniformly on compact sets to the conformal map to T) it is the case

that S�n,N (s)→ H�n (s). Uniformity in s follows from the fact that Ω♦
n ⊆ Ω�n is a fixed
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Figure 5: (a) and (b): Harris annular segment of the type envisioned for s ∈ ∂Ω♦
n

and z(s) ∈ [B�
n , D

�
n ]; in case (b), it so happens that z(s) and B�

n are close. (c) and (d):

since yellow paths indicated in these illustrations represent typical large scale events, there

cannot be too many Harris rings of the contrary type.
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(for n fixed) compact set, c.f., Section 5 in [5]. We conclude therefore that each point

on ∂Ω♦
n maps to a point sufficiently close to ∂T, and since ∂[H�n (∂Ω♦

n )] is a curve, it

easily follows that the Hausdorff distance is small.

However, we require the stronger statement that the relevant objects are close in the

sup–norm (i.e., in dsup(·, ·)). We will now strengthen the above arguments to acquire

this conclusion. Let us define the set of all points which are chosen as the z(s) (the

closest point to s) for some s in 〈∂Ω♦
n 〉N (the approximation to ∂Ω♦

n at scale N−1):

ZN := {z ∈ ∂Ω�n,N | ∃s ∈ 〈∂Ω♦
n 〉N , z = z(s)}.

Let us first observe that a priori S�n,N (ZN ) is a discrete set of points on ∂T which

we may consider to be a curve by linear interpolation. For simplicity let us consider

the portion of ∂T corresponding to the [C,D] boundary, i.e., the vertical segment con-

necting τ and τ2. Let us focus attention on S�n,N ([C�n,N , D
�
n,N ]∩ZN ). By monotonicity

of crossing probabilities, it is the case that these points are ordered along the vertical

segment.

Now our contention is that there are no substantial gaps between successive points:

Claim. Let s ∈ 〈∂Ω♦
n 〉N and z(s) be as described. Let ν > 0 be such that the

inequality n−ν � n−κ is sufficiently strong, as will emerge in the proof, where κ as

above is such that |S�n,N (s) − S�n,N (z(s))| . n−κ. Then for all N > n, it is the case

that the maximum separation between successive points of S�n,N ([C�n,N , D
�
n,N ]∩ZN ) is

less than n−ν , with ZN as described.

Proof of Claim. Suppose there are two points x1, x2 ∈ [C�n,N , D
�
n,N ] ∩ ZN , say with

S�n,N (x1) below S�n,N (x2), which are separated by a gap in excess of n−ν . Let us denote

by s1, s2 ∈ 〈∂Ω♦
n 〉N the points corresponding to x1, x2, respectively. Next consider

the 1
4 · n

−ν neighborhoods of S�n,N (s1) and S�n,N (s2) and consider the points in ∂Ω♦
n

“between” s1 and s2. There must be points between s1 and s2 since |S�n,N (s1) −

S�n,N (s2)| & n−ν − 2 · n−κ. So if these points were neighbors, by standard critical

percolation arguments, the difference between their S�n,N values must be small and the

above inequality would render this difference unacceptably large, for ν appropriately

chosen.

If these points all have S�n,N–value which lie in the 1
4 ·n

−ν neighborhoods described

above, then there would be a neighboring pair whose S�n,N values are separated by
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1
2 · n

−ν , which would again be unacceptably large. We conclude therefore that there

exists some point between s1 and s2 with S�n,N value outside these neighborhoods and

therefore a point in ZN whose S�n,N value lies between those of x1 and x2. This is a

contradiction.

Finally, let us describe the parametrization. First we denote by UN the number of

points in ZN and then we may parametrize say the vertical portion of ∂T by having,

for t = j, the curve on the jth site of ZN and linearly interpolating for the non–integer

times. Similarly, we parametrize the corresponding portion of S�n,N (〈∂Ω♦
n 〉N , so that

pairs of points at integer times correspond to their s, z(s) pair. The above claim then

implies that with this parametrization, the two curves are within n−ν at all times. We

have verified that S�n,N (〈∂Ω♦
n 〉N ) is sup–norm close to ∂T, uniformly in N .

The stated result now follows from Lemma 3.16.

Proof of the Main Theorem. The required power law estimate for the rate of con-

vergence of crossing probabilities now follows by concatenating the various theorems,

propositions and lemmas we have established. Let us temporarily use the notation

A ∼ B to mean that A and B differ by an inverse power of n.

Starting with Sn(An), we have that Sn(An) ∼ S�n (A�n ) by Theorem 3.3; S�n (A�n ) ∼

S�n (A♦n ) by Proposition 3.14, item 1; S�n (A♦n ) ∼ F�n (A♦n ) by Lemma 3.5; F�n (A♦n ) ∼

H♦
n (A♦n ) by Lemma 3.9; H♦

n (A♦n ) ∼ H�n (A♦n ) by Lemma 3.18; H�n (A♦n ) ∼ H�n (A�n ) by

Proposition 3.14, item 2; finally, H�n (A�n ) ∼ H(A) by Theorem 3.3.

4 σ–Holomorphicity

The main goal in this section is to establish the so–called Cauchy integral estimates

which is one of the more technical aspects required for the proof of Lemma 3.5. We will

address such issues in somewhat more generality than strictly necessary by extracting

the two properties of functions of the type Sn(z) which are of relevance: i) Hölder

continuity and ii) that their discrete (closed) contour integrals are asymptotically zero

as the lattice spacing tends to zero. As for the latter, it should be remarked that the
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details of how our particular Sn(z) exhibits its cancelations on the microscopic scale

can be directly employed to provide the Cauchy–integral estimates.

4.1 (σ, ρ)–Holomorphicity

As a starting point – and also to fix notation – let us review the concept of a discrete

holomorphic function on a hexagonal lattice. Let Hε denote the hexagonal lattice at

scale ε, e.g., the length of the sides of each hexagon is ε, so we envision ε = n−1, where

the hexagons are oriented horizontally (i.e., two of the sides are parallel to the x–axis).

For now, let Λε denote any collection of hexagons and Q : Λε → C a function on the

vertices of Λε. For each pair of adjacent vertices in Λε let us linearly interpolate Q on

the edges. In particular, Q as a function on edges when integrated with respect to arc

length yields the average of the values of Q at the two endpoints. Hence all integrals

may be regarded as taking place in the continuum.

We say that Q is discrete holomorphic on Λε if for any hexagon hε ∈ Λε with

vertices (v1, . . . v6) – in counterclockwise order with v1 the leftmost of the lowest

two – the following holds:

0 =

(
Q(v1) +Q(v2)

2
+ · · ·+ ei

5
3
π · Q(v6) +Q(v1)

2

)
= ε−1 ·

˛
∂hε

Q dz.

That is, the usual discrete contour integral (by this or any equivalent) definition van-

ishes. By way of contrast, we have the following mild generalization pertaining to

sequences of functions.

Definition 4.1. Let Λ ⊆ C be a simply connected domain and denote by Λε the

(interior) discretized domain given as Λε :=
⋃
hε⊆Λ hε and let (Qε : Λε → C) be a

sequence of functions defined on the vertices of Λε. Here ε is tending to zero and,

without much loss, may be taken as a discrete sequence. We say that the sequence

(Qε) is σ–holomorphic if there exist constants 0 < σ, ρ ≤ 1 such that for all ε sufficiently

small:

(i) Qε is Hölder continuous (down to the scale ε) and up to ∂Λε, in the sense

that there exists some ψ > 0 (envisioned to be small) such that 1) Qε is Hölder

continuous in the usual sense for zε, wε ∈ Λε \Nψ(∂Λε): if |zε−wε| < ψ, then |Qε(zε)−
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Qε(wε)| .
(
|zε−wε|

ψ

)σ
and 2) if zε ∈ Nψ(∂Λε), then there exists some w?ε ∈ ∂Λε such

that |Qε(zε)−Qε(w?ε)| .
(
|zε−w?

ε |
ψ

)σ
.

(ii) for any simply closed lattice contour Γε,

|
˛

Γε

Q dz| = |
∑
hε⊆Λ′ε

˛
∂hε

Q dz| . |Γε| · ερ, (4.1)

with Λ′ε, |Γε| denoting the region enclosed by Γε and the Euclidean length of Γε,

respectively.

Remark 4.2. (i) Obviously any sequence of discrete holomorphic functions which also

satisfy the Hölder continuity condition are σ–holomorphic.

(ii) There are of order |Γε|/ε terms in a discrete contour integration but each term

is multiplied by ε and so in cases where |Γε| = O(1) (a contour of fixed finite length)

|Γε| need not be explicitly present on the right hand side of Equation (4.1). We have

introduced a more general definition as we shall have occasion to consider contours

whose lengths scale with ε (specifically they are discrete approximations to contours

that are not rectifiable). (iii) From the assumption of Hölder continuity alone, we

already have that |
¸
∂hε

Q dz| . ε1+σ, but on a moment’s reflection, it is clear that

this is quite far from what is necessary to provide adequate estimates for the integral

around contours of larger scales that are amenable to the ε→ 0 limit.

We will now gather the necessary ingredients to establish that the (complexified)

CCS–functions are (σ, ρ)–holomorphic. The arguments here are certainly not new:

various ideas and statements needed are already almost completely contained in [14],

[10] and [5].

Proposition 4.3 Let Λ denote a conformal triangle with marked points (or prime

ends) B, C, D and let Λε denote an interior approximation (see Definition 3.1 of [5]) of

Λ with Bε, Cε, Dε the associated boundary points. Let Sε(z) denote the complex crossing

function defined on Λε. Then for all ε sufficiently small, the functions (Sε : Λε → C)

are (σ, ρ)–holomorphic for some σ, ρ > 0.

Proof. We will first establish, using some conformal mapping ideas, that Sε enjoys

Hölder continuity up to the boundary; since arguments like this already appear in [5],

we will be brief. Let us start with a pointwise statement:
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Claim. Suppose we have a point A on the [D,B] boundary, then we claim that there

is some ∆? ≡ ∆?(A) (with 1� ∆? � ε) and a connected set N∆? ⊂ Λε, also contained

in the ∆? neighborhood of Aε and connected to Aε, such that the following holds: there

exists some σ > 0 such that for any z ∈ N∆? ,

|Sε(z)− Sε(Aε)| .
[
|z −Aε|

∆?

]σ
.

Proof of Claim. Let z ∈ Λε and consider Sε(z) to correspond to blue paths. Then it

is clear that if there is a yellow path starting on [Dε, Aε] and ending on [Aε, Bε] which

encircles z, then events contributing to Sε(z) and Sε(Aε) occur together and there is

no contribution to |Sε(z)− Sε(Aε)|. The power (|z − Aε|/∆?)σ corresponds to having

the order of | log(|z − Aε|/∆?)| annuli (or coherent portions thereof) connecting the

two parts of the [Dε, Bε] boundary with an independent chance of such a yellow circuit

in each segment with uniformly bounded probability. Thus the principal task is to

construct the reference scale ∆? in a manner which is uniform in ε. While the entire

issue is trivial when |A−Aε|, |B−Bε| etc., are small compared to the distance between

various relevant “points” on Λ, we remind the reader that under certain circumstances,

the separation between these points and their approximates may be spuriously large.

Thus we turn to uniformization.

To this end, let ϕ : D → Λ denote the uniformization map. Let X ′A denote a

crosscut neighborhood of ϕ−1(A) which does not contain any of the inverse images of

the marked points ϕ−1(B), . . . nor, for ε small, the inverse images of their approximates

ϕ−1(Bε), . . . but which does (for ε small) contain ϕ−1(Aε). Next we set XA := X ′A ∩

ϕ−1(Λε) so that

ϕ(XA) = ϕ(X ′A ∩ ϕ−1(Λε)).

Note that (ϕ−1
ε ◦ ϕ)(XA) is itself a crosscut neighborhood of the image of Aε since Λε

is an interior approximation; here ϕε denotes the uniformization map associated with

Λε.

Next let rΠ = rΠ(Aε) be standing notation for the square centered at Aε of side

Π. Then, for ∆? sufficiently small, it is the case that ϕ−1(r∆?) ⊆ XA and it is worth

observing that ϕ−1
ε (∂(rΠ ∩ ϕ(Xδ))) is a crosscut containing ϕ−1

ε (Aε) for all Π ≤ ∆?.

But now, it follows that there is a nested sequence of (partial) annuli, down to scale

|z −Aε|, contained inside r∆? , within each of which there is a connected monochrome
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chain with uniform and independent probability separating z from Aε.

From the claim we have that corresponding to each boundary point of Λ, we

have a neighborhood ∆?(z) in which we have Hölder continuity and it is certainly

the case that ∂Λ ⊆
⋃
z∈∂ΛN∆?(z), so by compactness there exist z(1), . . . , z(k) such

that ∂Λ ⊆
⋃k
`=1N∆?(z(`)). Adding a few N∆(z)’s if necessary so that all neighborhoods

have non–trivial overlap, this implies the existence of some ψ > 0 such that Nψ(∂Λ) ⊆⋃k
`=1N∆?(z(`)) (here Nψ(∂Λ) denotes the Euclidean ψ–neighborhood of ∂Λ). In partic-

ular, ψ ≤ ∆?(z(`)), ` = 1, . . . , k, so if ε � ψ, and zε ∈ Nψ(∂Λ), then zε ∈ N∆?(z(`)) for

some ` and so |Sε(zε)−Sε(z(`)
ε )| .

(
|zε−z(`)

ε |
ψ

)σ
. For zε, wε ∈ Λε\Nψ(∂Λ), |zε−wε| < ψ,

so there are clearly of the order log(|zε − wε|/ψ) annuli surrounding both zε from wε

and we obtain |zε − wε| .
(
|zε−wε|

ψ

)σ
.

Finally, the statement concerning the behavior of discrete contour integrals of Sε

can be directly found in [14] for the triangular lattice (also c.f., [2]) and in [10], §4.3,

for the extended models.

4.2 Cauchy Integral Estimate

We will start by establishing a multiplication lemma for an actual holomorphic function

with a nearly–holomorphic function:

Lemma 4.4 Let Qε be part of a (σ, ρ)–holomorphic sequence as described in Definition

4.1. above. Let ε > 0 and suppose Γε is a discrete closed contour consisting of edges

of hexagons at scale ε. Let q(z) be a holomorphic function on Λ restricted to Λε (both

vertices and edges, all together regarded as a subset of C). Next let 1 � D � ε (both

considered small). Then for all ε ≥ 0 sufficiently small

|
˛

Γε

q ·Qε dz| . (‖q‖∞ ·
ερ

D
+ ‖q‖C1 ·Dσ) · (|Int(Γε)|+ |Γε| ·D).

Here we remind the reader that ‖q‖C1 = ‖q‖∞+‖q′‖∞. Moreover, in the statement and

upcoming proof of the lemma we also remind the reader that all integrals are regarded

as taking place in the continuum.

Proof. Consider a square–like grid of scale D and let Rk denote the kth such square
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Figure 6: Aspects described in the proof of Lemma 4.4.

which has non–empty intersection with Λε. Next we let

γk := ∂(Rk ∩ Int(Γε)).

Note that γk is not necessarily a single closed contour, but each γk is a collection of

closed contours. See Figure 6. It is observed that if F is a function, then
¸

Γε
F dz =∑

k

¸
γk
F dz, where by abuse of notation, as mentioned above, each term on the right-

hand side may represent the sum of several contour integrals. Next let us register an

estimate within a single region bounded a γk, the utility of which will be apparent

momentarily:

Claim. Let zk ∈ Rk (if Rk intersects ∂Λε then choose zk in accordance with item (i)

of the definition of σ–holomorphicity so that Hölder continuity of Q can be assumed).

Then ˛
γk

q ·Q dz = q(zk) ·
˛
γk

Q dz + Ek, (4.2)

where

|Ek| . |γk| · ‖q‖C1 ·D1+σ

and to avoid clutter, we omit the ε subscript on the Q’s.
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Proof of Claim. Let us write

Q(z) = Q(zk) + δQ(z)

and similarly,

q(z) = q(zk) + δq(z).

We then have that

˛
γk

q ·Q dz − q(zk) ·
˛
γk

Q dz =

˛
γk

δQ · δq dz +Q(zk) ·
˛
γk

δq dz.

The second term on the right hand side vanishes identically by analyticity of q whereas

the integrand of the first term, by the assumed Hölder continuity of Q and analyticity

of q, can be estimated via . ‖q‖C1 ·D ·Dσ and the claim follows.

Therefore we may write

˛
Γε

q ·Q dz =
∑
k

˛
γk

q ·Q dz :=
∑
k

q(zk) ·
˛
γk

Q dz +
∑
k

Ek,

where zk is a representative point in the region Rk∩Int(Γε). We divide the error on the

righthand side into two terms, corresponding to interior boxes – which do not intersect

Γε, and boundary boxes – the complementary set.

Let us first estimate the interior boxes. Here, from the claim we have that the

integral over each such box incurs an error of ‖q‖C1 ·D2+σ since here |γk| . D. There

are of the order |Int(Γε)| ·D−2 interior boxes so we arrive at the estimate ‖q‖C1 ·Dσ ·

|Int(Γε)|. On the other hand, for boundary boxes, the contribution to the errors from

the boundary boxes will certainly contain the original contour length |Γε|. To this we

must add .D × [the number of boundary boxes] corresponding to the “new” boundary

of the boxes themselves that we might have introduced by considering the boxes in the

first place. This is estimated as follows:

Claim. Let M(Γε, D) denote the number of boundary boxes – i.e., the number of

boxes on the grid visited by Γε. Then M . |Γε|/D.

Proof of claim. Since arguments of this sort have appeared in the literature (e.g., [8],

[9]) many times, we shall be succinct: we divide the grid into 9 disjoint sublattices

each of which is indicated by its position on a 3 × 3 square. Let M1, . . . ,M9 denote
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the number of boxes of each type that are visited by Γε. We may assume without

loss of generality that ∀j, M1 ≥ Mj . Let us consider the coarse grained version of

Γε as a sequence of boxes on the first lattice (visited by Γε); revisits of a given box

are not recorded until/unless a different element of the sublattice has been visited in–

between. Since the distance between each visited box is more than D it follows that

corresponding to each visited box the curve Γε must “expend” at least D of its length,

i.e., |Γε| ·D ≥M1 ≥ (1/9) ·M and the claim follows.

It is specifically observed that the additional boundary length incurred is at most

comparable to the original boundary length. In any case altogether we acquire an

estimate of the order |Γε| · ‖q‖C1 ·D1+σ. We have established

|
∑
k

Ek| . ‖q‖C1 ·Dσ · (|Int(Γε)|+ |Γε| ·D).

Finally, by item ii) of (σ, ρ)–holomorphicity,∑
k

|q(zk) ·
˛
γk

Q dz| . ‖q‖∞ · ερ · (|Int(Γε)| ·D−1 + |Γε|).

This follows from the decomposition similar to the estimation of the Ek terms with

the first term corresponding to interior boxes and the second to boundary boxes. The

lemma been established.

We can now immediately control the Cauchy integral of a (σ, ρ)–holomorphic func-

tion uniformly away from the boundary:

Corollary 4.5 Let Qε be part of a (σ, ρ)–holomorphic sequence as described in Def-

inition 4.1 above. Let Gε(z) be given as the Cauchy–integral of Qε – as in Eq.(4.4) –

over some (discrete Jordan) contour Γε. Let z denote any lattice point in Int(Γε) such

that

dist(z,Γε) ≥ n−a5 := d1

for some a5 > 0 and let D � ε (both considered small). Then for all ε > 0 sufficiently

small, and any d2 < d1,

|Gε(z)−Qε(z)| = |
1

2πi

˛
Γε

(Qε(ζ)−Qε(z)) ·
1

ζ − z
dζ |

.

(
ερ

d2D
+
Dσ

d2
2

)
· (|Int(Γε)|+ |Γε| ·D) +

(
d2

d1

)σ (4.3)
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Proof. This is the adaptation of standard arguments from the elementary theory of

analytic functions to the present circumstances. Let γd2 denote an approximately

circular contour that is of radius d2 and which is centered at the point z. Let Γ′ε

denote the contour Γε together with γd2 – traversed backwards – and a back and forth

traverse connecting the two. We have, by Lemma 4.4, that

| 1

2πi

˛
Γ′ε

(Qε(ζ)) · 1

ζ − z
dζ | .

(
ερ

d2D
+
Dσ

d2
2

)
· (|Int(Γε)|+ |Γε| ·D)

where, in the language of this lemma, we have used ‖q‖∞ . d−1
2 and ‖q‖C1 . d−2

2 .

Thus we write

Gε(z) =
1

2πi

˛
γd2

Qε(ζ)

ζ − z
dζ + E2,

with |E2| bounded by the right hand side of the penultimate display. So, subtracting

Qε(z) in the form

Qε(z) =
1

2πi

˛
γd2

Qε(z)

ζ − z
dζ,

we have that

|Gε(z)−Qε(z)| . |E2|+
1

2π

˛
γd2

|Qε(z)−Qε(ζ)|
ζ − z

dζ

and the stated result follows immediately from the Hölder continuity of Qε.

By inputing information on |∂Ω�n |, the required Cauchy–integral estimate now fol-

lows:

Proof of Lemma 3.5. We first recall the statement of the lemma:

Let Ω�n and S�n be as in Proposition 3.2 so that

|∂Ω�n | ≤ nα(1−a1),

where M(∂Ω) < 1+α. For z ∈ Ω�n (with the latter regarded as a continuum subdomain

of the plane) let

F�n (z) =
1

2πi

˛
∂Ω�

n

S�n (ζ)

ζ − z
dζ. (4.4)

Then for a1 sufficiently close to 1 there exists 0 < β < σ, ρ and some a5 > 0 such that

for all z ∈ Ω�n so that dist(z, ∂Ω�n ) > n−a5,

∣∣S�n (z)− F�n (z)
∣∣ . n−β.
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By Proposition 4.3, we have that the functions S�n (z) (with ε = n−1) have the

(σ, ρ)–holomorphic property. In addition, we shall also have to keep track of a few

other powers of ε, which we now enumerate:

i) let us define b1 > 0 so that in macroscopic units we have

|∂Ω�N | ≤ ε−α(1−a1) := ε−αb1 ;

ii) let us define

d2 := εs,

for some s > 0 to be specified later;

iii) finally, we define

D := εt,

where the role of D will be the same as in the proof of Lemma 4.4 (it is the size

of a renormalized block).

Plugging into Corollary 4.5 (again with n−a5 = d1) we obtain that∣∣S�n (z)− F�n (z)
∣∣ . ( ερ

d2D
+
Dσ

d2
2

)
· (|Int(∂Ω�n )|+ |∂Ω�n | ·D) +

(
d2

d1

)σ
.
(
ερ−(s+t) + εtσ−2s

)
· (1 + ε−αb1+t) +

εsσ

dσ1

= ερ−(s+t) + ερ−s−αb1 + εtσ−2s + ε(1+σ)t−αb1−2s +
εsσ

dσ1
.

With σ fixed, the parameters s, t > 0 and d1 can be chosen so that all terms in the

above are positive powers of ε: set t = λσ, where λ ∈ (0, 1) so that σ > 1−λ
λ . This

choice of t implies that (1 + σ)t > σ > t. Now let s > 0 and b1 > 0 be sufficiently

small so that 2s < tσ and αb1 < t so altogether we have the last two terms are positive

powers of ε. Next take t and then s and b1 even smaller if necessary, we can also ensure

that ρ > s + t and ρ > s + αb1. Finally, d1 can be chosen to be some power of ε so

that εs � d1.

5 Harris Systems

This last section is devoted to the proof of Theorem 3.10, although the construction

may be of independent interest and find further utility.
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5.1 Introductory remarks

For many purposes, the pertinent notion of distance – or separation – is Euclidean; in

the context of critical percolation, what is more often relevant is the logarithmic notion

of distance: how many scales separate two points. These matters are relatively simple

deep in the interior of a domain or in the presence of smooth boundaries. However, for

points in the vicinity of rough boundaries, circumstances may become complicated. For

certain continuum problems, including, in some sense, the limiting behavior of critical

percolation, there is a natural notion for a system of increasing neighborhoods about

a boundary point: the preimages under uniformization of the logarithmic sequence of

cross cuts centered about the preimage of the boundary point in question. This device

was employed implicitly and explicitly at several points in [5]. In the present context,

we cannot so easily access the limiting behavior we are approaching. Moreover, in order

to construct such a neighborhood sequence at the discrete level, it will be necessary to

work directly with Ωn itself.

We will construct a neighborhood system for each point in ∂Ωn by inductively

exploring the entire domain via a sequence of crossing questions. Our construction

demonstrates (as is a posteriori clear from the convergence of Sn to a conformal map)

that various domain irregularities e.g., nested tunnels, which map to a small region un-

der uniformization are, in a well–quantified way, also unimportant as far as percolation

is concerned.

5.2 Preliminary Considerations

For completeness let us first recall the setting. Let Ω ⊂ C be a simply connected

domain with diam(Ω) <∞ and let 2∆ denote the supremum of the radius of all circles

which are contained in Ω. Further, let D∆ denote a circle of radius ∆ with the same

center as a circle for which the supremum is realized. We will denote by Ωm any interior

discretization of Ω, e.g., one of the types discussed before; we use n−1 to denote the

lattice spacing. For ω ∈ ∂Ωm we will define a sequence of segments the boundaries

of which are paths beginning and ending on ∂Ωm. As a rule, these segments separate

ω from D∆. The dimensions of these segments will be determined by percolation

crossing probabilities analogous to the system of annuli (of which these are fragments)
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investigated by Harris in [11]. Notwithstanding that the regions between segments

do not actually form annuli, we will refer to the resultant objects as Harris rings –

or, occasionally, ring segments, annular fragments, etc. The ultimate goal will be to

ensure that Harris rings have uniform upper and, to some extent, lower bounds on their

crossing probabilities (among other properties). Moreover, these represent the essence

of what must be traversed by paths emanating from D∆ which reach to “the essential

vicinity” of the point ω. Details will unfold with the construction. The ultimate object

will be called the Harris system stationed at ω.

We will start with the preliminary considerations of the construction. Let S0(ω)

denote the smallest square (i.e., lattice approximation thereof) which is centered at ω ∈

∂Ωm and whose boundary intersects D∆. That is to say, the boundary is approximately

tangent to ∂D∆. We set R0(ω) := S0(ω) ∩ Ωm. Successive topological rectangles

A1(ω), . . . , Ak(ω), . . . which may be envisioned as the intersection of Ωm with a nested

sequence of square annuli centered at ω will in practice be constructed via a non–trivial

inductive procedure: 1) there will be deformations of the shape of the annular segments;

2) the sizes of the “smaller squares” (i.e., the location of the “next” boundary) will be

determined by percolation crossing probabilities; 3) the basic shape will not always be

a square centered at ω. Nevertheless, we will call these annular (ring) fragments.

The annular fragment Ak will have four boundary pieces, forming a topological

rectangle; opposing pairs of boundaries will be denoted as yellow and blue with blue

corresponding to a portion of ∂Ωm. The rectangle Ak will constitute an arena for

exclusive crossing type events e.g., yellow crossings between the yellow boundaries and

blue crossings between the blues. A good portion of our inductive procedure involves

the refinement and coloring of the boundaries.

All points on the yellow boundaries can be connected to ω via a (self–avoiding) path

in the complement of ∂Ωm and in the complement of the blue boundaries. The outer

and inner yellow boundaries may be – somewhat loosely – defined by the stipulation

that all such paths to the outer boundary must first pass through the inner boundary.

Already, it is the case that all of ∂Ωm ∩ ∂Ak is blue; indeed, envisioning Ak as the

intersection of Ωm with an actual square annulus, some of the blue boundary will be

where ∂Ωm cuts through such a ring.

Key in the initial portion of the construction is that for some ϑ with 0 < ϑ < 1/2, it
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will be the case that the probability of a yellow crossing between the yellow segments of

the boundaries and the probability of a blue crossing between the blue segments of the

boundaries are both in excess of ϑ (and therefore less than 1− ϑ). Eventually we will

forsake the lower bound for the yellow crossings in favor of an ostensibly much smaller

bound pertaining to geometric properties of the annular fragments which permit yellow

crossings under tightly controlled conditions. And, eventually, we may have to consider

ϑ as a small parameter. Nonetheless all quantities will be uniform in the ultimate

progression of fragments and in the lattice spacing n−1 for n sufficiently large.

The essence of the geometric property which we will require of the Harris regu-

larization scheme is that ω – or its relevant vicinity – can be connected to D∆ via a

sequence of boxes housed within the ring fragments. The size of the boxes is uniform

within a layer and does not increase or decrease too fast between neighboring layers.

While the box sizes may be “small”, this will only be relative to the characteristic scale

of the layer via a numerical constant which is independent of n and the particulars of

the fragment. Thus, the scale of the boxes may be considered comparable to the scale

of the fragments to which they belong.

Dually, ω can be “sealed off” from D∆ by the independent events of separating

paths which have an approximately uniform probability in each segment. Thus we

envision an orientation to our constructions leading from D∆ to ω. (Indeed, it is

this orientation which permits us to choose the appropriate components to be colored

yellow at various stages of the construction.) Moreover, from these considerations, it

emerges that only the first O(log n) of these segments are relevant for the problems

under consideration. If Ωm has a smooth boundary this would, in fact, be all of them;

under general circumstances, as it turns out, the configurations in the region beyond

the first O(log n) segments have negligible impact on the percolation problem at hand.

We will describe what is fully required in successive stages of increasing complexity,

but before we begin, let us dispense with some geometric and some lattice details.

While the definitions and conventions which follow are certainly not all immediately

necessary – and possibly unnecessary for an understanding of the overall scheme – we

have elected to display them at the outset in a place where they are readily accessible.

The reader is invited to skim these lightly and later, if required, refer back to these

paragraphs.
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Figure 7: Various of notions of horizontal and vertical consistent with hexagonal tiling:

(a) a horizontal string (b) a vertical string (c) a vertical segment (d) a horizontal segment.

Preliminary definitions. The moral behind the upcoming definitions is that all

lattice details should be resolved in as organic a way as possible via the definition

of the percolation properties for the model at hand. All of the models of interest

for us have representations which are hexagonal based: each model provides some

smallest independent unit (abbreviated SIU) in the sense that such a unit (a subset

of the lattice) can be stochastically configured independently of one another and any

smaller subset is either empty or is correlated with some neighbor. In the case of

independent hexagonal tiling, the smallest such unit is simply a hexagon whereas for

the generalized models in [10] the smallest unit can be either a single hexagon or a

flower (which consists of 7 hexagons). All notions of neighborhood, self–avoiding, etc.,

are now to be thought of in terms of the intrinsic definition of connectivity associated

with the underlying percolation problem. However, it is pointed out that in the case

of the models introduced in [10], path transmissions may take place over fractions of

hexagons.

1. A string of hexagons is a sequence of hexagons with no repeats each of which –

save the first – has an edge in common with its predecessor. Similarly, a segment

is a self–avoiding path consisting of edges (which are the boundary elements of

hexagons). With apology, both objects will on occasion be referred to as paths;

in all cases, the relevant notion will be clear from context and/or the distinction

will be of no essential consequence. Similarly, if A ⊂ Ωm is a connected set of
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hexagons then the boundary, ∂A, could mean the hexagons in Ωm\A which share

an edge with an element of A or the segment consisting of the afore described

shared edges. Again, the distinction will usually be unimportant but, if need

arises will be made explicit.

2. For x, y ∈ Ωm, we will use P : x  y to denote a string in Ωm connecting x

and y. By contrast, the event {x y} will mean, in the pure hexagon problem,

the existence of a P : x  y such that each element of P is of the same color

thereby forming a monochrome percolation connection (or transmission) between

these points. For the more general cases, {x y} also denotes this monochrome

connectivity event but here some of the transmissions may take place through

hexagon fragments (see, if desired, [10], Figure 1).

3. We shall often use descriptions like horizontal and vertical, and this should be

understood to mean the closest lattice approximation to either a horizontal or

vertical segment. The precise details are actually unimportant but recall that,

to be definitive, we have assumed that hexagons are oriented so that there are

two vertical edges parallel to the y–axis. For the moment, let us discuss the pure

hexagon problem.

A horizontal string of hexagons would consist of a sequence of neighboring hexagons

the centers of which are horizontally aligned. Thus, each hexagon in the string

shares only vertical edges in common with its neighbors or neighbor. By con-

trast, a vertical string of hexagons will “zigzag” a bit. E.g., the kth hexagon

in the sequence shares in common the segments to the left of the right vertical

segment with the (k ± 1)st hexagon. And similarly for the (k + 2)nd hexagon in

the sequence. More pertinently, a horizontal segment consists, e.g., of the tops of

hexagons in a horizontal string with each hexagon in the string contributing (ex-

cept, perhaps at the endpoints) the two edges above and adjacent to the vertical.

A vertical segment alternates e.g., between left vertical edges on even hexagons

and, for the odd hexagons, the entire left sides connect these (even vertical edges)

together. Thus, horizontal segments are above or below horizontal strings and

similarly vertical segments are to the left or right of vertical strings. See figure

7. Square boxes will be understood as already aligned with respect to the fixed
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Cartesian axes with boundaries consisting of vertical and horizontal segments as

described.

There is a natural notion of neighboring segments, namely with a fixed string

in mind, the segment which is of (approximately) the same length that is on the

other side of the string. More formally, given a segment and associated string, the

next segment in the direction of the string is given by the symmetric difference

over all hexagons in the string of the edges of each hexagon and then deleting the

initial segment. These observations will be useful when we define the concept of

sliding. Notwithstanding, the ends of strings and segments must often be tended

to on an individual basis as is the case of composite SIU.

For extended SIU – flowers – for now it is only important to state a few rules:

for strings, the entire SIU must be incorporated as a single unit. It should be

noted that this incorporation can have a variety of manifestations; e.g., in the case

of horizontal segments, there are three levels at which the string may impinge.

However, all pure hexagons in a horizontal string must still have their centers

horizontally aligned. Similarly for the case of vertical strings. In conjunction

with the above, segments are forbidden to pass through the flower and there-

fore must circumvent. In the context of extended SIU, there will be some small

amount of “special considerations” when we turn our discussion to distances and

neighborhoods.

4. If If x = (x1, x2) and y = (y1, y2) are SIU in Ωm and V ⊆ Ωm then we define the

distance dV∞(x, y) to be the L∞– distance, i.e., max{|x1−x2|, |y1−y2|}, subject to

the local connectivity constraint that they can actually be connected within the

stated distance scale. With precision: if bL is notation for a box of side–length

2L then

dV∞(x, y) = min{L | ∃bL such that a string in bL contains x and y}.

If no such bL exists – i.e., if it is not the case that both x and y are in V , than

we will regard dV∞(x, y) as being infinite.

If X and Y are sets in V , then dV∞(X ,Y ) is defined in the usual way, i.e.,

dV∞(X ,Y ) = inf
x∈X,y∈Y

dV∞(x, y).
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Once again, with apology, we will also use d
(·)
∞(·) to denote similar minded dis-

tances between pairs (or sets) of edges and, often enough, omit the superscript

when it is clear from context.

5. Similar to the above item: let Γ denote a segment or a string. Then ‖Γ‖∞ denotes

the dΓ
∞– or L∞– diameter of Γ.

6. A topological rectangle is a simply connected subset of Ωm containing all its SIU

that has four marked points on the boundary dividing the boundary into two

pairs of “opposing” segments: (L ,R) and (T ,B). We envision such a rectangle

as a stadium for a dual percolation crossing problem.

Definition 5.1 (Sliding). Let q, q′ denote points in Ωm. Let z1, z2 ∈ ∂Ωm and let

Γ denote a segment in Ωm, connecting z1 to z2 and which separates q and q′. Thus,

Ωm is disjointly decomposed into the connected components CΓ(q) and CΓ(q′) of q and

q′ respectively with the sets CΓ(q) and CΓ(q′) having Γ as a common portion of their

boundaries. If necessary, it is assumed that Γ is such that CΓ(q) – and hence CΓ(q′) do

not contain any partial SIU. Moreover, to avoid spurious complications, it is assumed

that the L∞ separation between Γ and q′ is at least a few units in excess of the ` to

be discussed below.

We now define the sliding of Γ by ` units in the direction of q′. In essence, this is

the construction of a new segment – which we denote by Γ′ – that is ` units closer to

q′ and, correspondingly ` units further from q. The segment Γ′ also connects some z′1

and z′2 on ∂Ωm and, most importantly, also separates q from q′. The segment Γ′ in

most cases can be envisioned as a displacement of Γ with some natural adjustments.

We reiterate that, as was the case above, the microscopic details are not essential and

may be omitted in a preliminary reading.

Let hΓ,q denote the hexagons in CΓ(q) which have at least one edge in Γ and for

h ∈ hΓ,q, let N`,C (q′)(h) denote the radius ` neighborhood of h using the d
CΓ(q′)
∞ –

distance:

N`,CΓ(q′)(h) = {h′ | dCΓ(q′)
∞ (h, h′) ≤ `}.

Next we have

Ñ`,CΓ(q′)(Γ) = ∪
h∈hΓ,q

N`,CΓ(q′)(h)
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this set along with the completion of any partial SIU it contains may be regarded as

the relevant k–neighborhood of Γ and will be denoted as above without the tilde. The

“`–slide” of Γ will be a subset of the edge boundary of N`,CΓ(q′)(Γ).

Indeed, let us consider

Γ̃′ = ∂N`,CΓ(q′)(Γ) \ (∂Ωm ∪ Γ)

where in the above, both notions of boundary refer to edge boundaries. It is evident

that Γ̃′ consists of one or more segments each of which must begin and end on the

domain boundary. Let us denote these segments by Γ′1,Γ
′
2, . . . ; one of these will be

selected as the new segment Γ′.

We now claim that exactly one Γ′j separates q from q′. Indeed let us reconsider the

amalgamated Γ̃′: since q′ /∈ N `,CΓ(q′)(Γ) (because of the assumed distance between q′

and Γ in excess of `) it is clear that Γ̃′ separates q′ from Γ and hence certainly separates

q and q′. Thus any self–avoiding path of edges Ωm connecting q and q′ must intersect

Γ̃′ and the above claim is now readily established.

Indeed, consider the set CΓ(q′)\N`,CΓ(q′)(Γ) which consists of connected components

K1, K2, etc. The edge boundaries of these Kj ’s consist of an edge segment of ∂Ωm

joined together with an edge segment from Γ̃′ the latter of which correspond to the

aforementioned (Γ′j)’s. If q′ ∈ Ωm then we observe that only one of these Kj can

contain it and this corresponds to the Γ′j selected. If q′ ∈ ∂Ωm, then, similarly, only

one of the Kj uses edges of this hexagon (where we again invoke the fact that the

separation between q′ and Γ is in excess of `) and this corresponds to the Γ′j selected.

Let us use A as notation for the connected region bounded by Γ, Γ′ and the appro-

priate portion of ∂Ωm. Then it is noted that to within a few lattice spacings (due to

inherent discreetness and the possible effects SIU) all points on Γ′ are the same dA∞–

distance from Γ. However, it should be noted that due to the possibility of pockets

that had been sealed off by the now discarded Γ′j there might well be points in A con-

siderably further from Γ than Γ′. Moreover, the contrast between Γ′′ and Γ′ with the

former constructed via an (` + 1)–neighborhood slide will be regarded – by definition

– as the (precursory) addition, modulo the aforementioned discreet irregularities, of a

single layer to A.
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5.3 Preliminary Constructions

Using the above described sliding procedure, we will start with some initial segment

which separates ω from D∆ (or some representative point therein) and consider the

sequence of slides indexed by ` in the direction of ω. We stop this procedure when

certain criteria are satisfied within the region (which is a topological rectangle) whose

boundary consists of the initial segment, the current slide and the relevant portions of

the boundary. This region will be referred to as a ring fragment and the criteria will

pertain to crossing probabilities within and certain geometric properties of the region

itself. When the requisite criteria are satisfied, we will refer to the current slide (or

certain modifications thereof) as the successor segment of the initial segment. It is

this successor segment which then plays the role of the “initial” segment when the

next successor is to be defined.

We remark that the overall construction is somewhat intricate due to the modi-

fications to which we have already alluded. Indeed, the full assemblage will actually

require an inductive procedure. Our expository methodology is as follows: we will

first describe the one–step procedure, i.e., constructing an acceptable successor seg-

ment from some given segment and then describe the full logical inductive procedure

in a last subsubsection; further, the one–step procedure may in itself be complicated

so we have therefore broken the construction into three stages which we will call the

S–construction, the Q–construction and the R–construction. We will describe them in

order as they require more and more detailed control on successive Harris segments. In

all cases we will refer to the running (current) initial segment as YI and the constructed

successor segment as Y
(·)
F where (·) indexes the relevant modification. At each stage,

we need not make any specific claim as to the nature of YI however, it may be generally

assumed that YI is such that it already satisfies the criteria (·).

Finally, we remark that for simple domains e.g., convex domains or domains bounded

only by straight line segments, the vast majority of the forthcoming is unnecessary:

here we create successors as just described stopping when crossing probability within

the region acquires a desired value (the simplified S–construction) – or when a fixed

scale determined by the domain has been reached – and then divide the region into

boxes the scale of the region itself (the simplified R–construction). All of the up and
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coming technology concerns the possibility of (multi–scale) fjords, needle–like tunnel

structures (on multi–scales) and similar minded impediments.

5.3.1 The S–Construction (Harris ring fragments)

The initial stage is the S–construction, which starts with a square centered at the

specified ω ∈ ∂Ωm. Recall the square S0(ω) centered about ω and note that since

∂Ωm∩∂D∆ = ∅ whereas ∂D∆ has non–trivial intersection with ∂S0(ω), we can declare

the first yellow segment of the boundary of the first ring fragment to be, simply, the

connected component of ∂S0(ω)∩∂D∆ in Ωm. We denote this yellow boundary portion

by Y0.

Consider a a slide of Y0 which we temporarily denote XS and let S = CXS
(ω). For

immediate use and for future reference, let us define some auxiliary objects:

(a) Let Pω be the set of all paths P : ω  Y0 defined as usual: they are self–avoiding

paths (strings) consisting of hexagons with P ⊆ Ωm ∪ {ω}, and P ∩ ∂Ωm = {ω}.

(b) Let YS ⊆ XS be such that any z ∈ YS is the last point in S for some P ∈ Pω.

Note that in general these could be SIUs.

(c) Let YS ⊂ YS be the set of points (edges) in YS that can be reached from ω by a

portion of a path P ∈ Pω which lies in the complement of YS .

In general a string P may be regarded as a sequence of neighboring hexagons, a

sequence of centers of neighboring hexagons (points of the original triangular lattice)

connected by straight line segments (bonds of the original triangular lattice) or the

corresponding sequence of edges separating the elements of the hexagon description

(bonds of the honeycomb lattice dual to the aforementioned bonds). To avoid excessive

clutter, here and in the future, we will be non–specific about such matters when they

are of no actual consequence to the main argument. Some illustrations which indicate

generic differences between the sets YS and YS can be found in the inserts of Figure 8.

We shall refer to these YS as yellow segments. We will now establish some elemen-

tary topological properties of these yellow segments YS ; in particular, we claim that as

segments, the YS are in fact well–defined:

Claim. The set YS as described above is non–empty and consists of a single connected

component. Moreover, YS separates ω from Y0, i.e., every path in Pω contains at least
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Figure 8: Illustration of the principal concepts for the proof that YS is a connected set.

In the example illustrated, the loop L is completed using portions of ∂S0. Top insert:

YS 6= YS . Bottom insert: YS = YS .

one element of YS .

Proof of Claim. To establish that YS is non–empty, let P ∈ Pω and let z ∈ YS denote

the first element of YS encountered by P. Further, let PI denote the (initial) portion

of P till it reaches z. Now, by definition of the set there is some other P ′ ∈ Pω (which

is possibly the same as P) such that z is the last element of P ′ which is in S. We

denote by P ′
F the (final) portion of P ′ after it has passed through z. Now consider

the path R which may be informally described as PI ∪ {z} ∪P ′
F. It is seen that R

satisfies the requisite properties of a path described in item (c) above for the point z

and so, indeed, YS is not empty.

An argument along these lines also demonstrates that YS separates ω from Y0:

again letting P ∈ Pω, we can consider z as above. The same argument then shows

that z ∈ YS and thus we conclude that every path in Pω contains an element of YS .

We now turn to the central portion of the claim, namely that YS is a single com-

ponent. To this end, let us consider the ancillary paths which are along the lines of R

above. This set of paths will be called PS and each P ∈ PS has the property that it
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has a unique encounter with YS – which is necessarily a single element z in YS . So,

in particular, each P ∈ PS divides into a PI – before the encounter with YS , a PF –

after the encounter with YS , and a point z in YS itself.

Foremost, it is clear by construction of paths along the lines of R that any z ∈ YS

has a P ∈ PS which goes through z. We further define VS to be the connected

component of ω relative to the PI’s just described:

VS = {v ∈ Ωm | v ∈PI for some PI ⊂P ∈ PS}

Similarly, we define US to be the points reachable by some PF ⊂P ∈ PS . Formally,

we define both sets as disjoint from YS and adjoin ω to VS .

Now it is noted that ∂Ωm may in general divide ∂S into many components so we

are showing that only one of these contains YS . We refer the reader to Figure 8 for

the up and coming argument. We must demonstrate that any z1, z2 ∈ YS must be

in the same component. We may as well assume that z1 6= z2 and that they are not

neighbors, since otherwise it is immediate that they are in the same component.

Consider paths P1,P2, in PS which contain z1 and z2, respectively. The initial

portions of these paths PI,1 and PI,2 may very well intersect, so let κ1 denote the last

such point along PI,1 and similarly for κ2; if there are no such point along the paths

proper, then we define κ1 = κ2 = ω. Nevertheless, we certainly allow the possibility

that κ1 = κ2. Assuming though that κ1 6= κ2, there is (for the sake of definitiveness) a

portion of PI,1 connecting κ2 to κ1 since, by definition, κ1 was the last such “collision”

point along PI,1. Thus, starting at z2, moving (backwards) along P2 till κ2 is reached

then moving (forwards) along P1 through κ1 and on to z1 we have achieved a path

z2  z1 which is entirely in VS . This latter path we regard as one part of a loop.

On the other side of YS , in US , we follow a similar procedure and define, in an

analogous fashion, the points η1 and η2. Again, if no such points exist along the paths

proper, then we join these paths together using the the relevant portion of Y0. This

constitutes another path z1  z2 which is disjoint from the first. This is the second

part of the loop the entirety of which – including z1 and z2 – is denoted by L . Now,

with the possible exception of ω itself, L is disjoint from ∂Ωm. Thus, Int(L ) ⊂ Ωm

and so the entire portion of YS in between z1 and z2 lies within.

Let z3 be one such point in between. Consider any path residing in US from z3
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to the second half of the loop. (Such a path may be acquired by attempting a path

z3  ∂S0 – in US – until obstructed.) Joining this path with the relevant portions

of, PF,1 and/or PF,2 we now have a path z3  ∂S0 in US . Performing a similar

construction in VS we get a path z3  ω in VS and putting these two together we have

constructed a bona fide P3 ∈ PS which contains z3. We have therefore demonstrated

z3 ∈ YS as desired.

Next we may consider a further successor segment YS′ of YS and the corresponding

component of ω, S′. Then we have the following “partial ordering” property:

Claim. Let S, S′, YS′ etc. be as described. Then YS separates YS′ from Y0 and YS′

separates YS from ω. A similar result holds for intermediate Y – segments. E.g., if YS†

is an earlier successor of Y0 than YS , then YS† separates Y0 from YS or if YS† is an

intermediate successor segment between YS′ and YS , then YS† separates YS from YS′

etc.

Proof of Claim. This follows readily from the ideas invoked in the proof of the previous

claim. Consider P : YS′  Y0 and define PF,S′ to be the portion of this path after its

final exit from YS′ – which takes place at some z′. Now adjoin to this an “initial” path,

PI,S′ (of the type described in the proof of the previous claim) so that PI,S′∪z′∪PF,S′

is a path in PS′ . It is asserted that PI,S′ can not meet YS : indeed, supposing to the

contrary, we could adjoin its portion from ω to YS with an appropriate PF,S – and a

z ∈ YS . Now since the latter two take place, essentially, in Sc, this composite object

would represent a path ω  Y0 which circumvents YS′ altogether which is impossible

since YS′ separates ω from Y0 by a result of the previous claim.

However, the path PI,S′ ∪ z′ ∪PF,S′ is a path from ω to Y0 so it must intersect YS

somewhere; by the above, this has to be in PF,S′ which, it is recalled was part of the

original P. With regards to intermediate successors, e.g., if YS† is an earlier successor

of Y0 than YS , we observe that as a consequence of their mutual construction, S ⊂ S†,

and the preceding argument may be taken over directly. Further generalities discussed

in the statement of this claim are handled similarly.

Given Y0 and its successor YS , the blue boundary is defined to be the portions of

∂Ωm connecting the endpoints of Y0 and YS . The topological rectangle formed by the
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blue boundaries and Y0, YS will be denoted by an A (an annular fragment).

The size of the annular fragment will be adjusted, if possible, to keep the probability

of a yellow crossing Y0  YS in the range (ϑ, 1 − ϑ) with ϑ a constant of order unity

independent of n, A, etc., with a constraint to be described below (but eventually to

be taken as “small”). This will be attempted by using the sliding scale construction

described in Definition 5.1; in essence, we advance by single lattice units till the crossing

probability achieves a value in the desired range. Thus, we arrive at a sequence of ring

fragments A1, A2, . . . with, essentially, uniform crossing probabilities of both types.

Unfortunately, as will emerge (and as is not hard to envision) for the general cases,

the procedure may fail. Then we must engage the more complicated constructions

described in the rest of this subsubsection.

For the time being, let us assume then that A1, A2, . . . , Ak−1 have been constructed

with the desired properties so far mentioned; we will go about constructing Ak. In the

present stage of the construction it is, as part of the assumption, the case that we

have already acquired the yellow boundaries Y0, . . . Yk−1. We investigate the sequence

Xk,1, Xk,2, . . . of successively progressing slides starting with Yk−1 (in the direction

of ω). This necessarily leads to the consideration of a double sequence of temporary

boundaries – the slides themselves – and the associated yellow segments, Yk,1, Yk,2, . . . ;

these are both temporary especially the first (temporary temporary) compared with

the second which is more legitimate (legitimate temporary). It is noted that Yk,` ⊆ Xk,`

where, it is emphasized, the inclusion is generically strict. These form two sequences

of temporary topological rectangles. Elements of the first sequence will be denoted by

Ak,` which has yellow boundaries Yk−1 and Yk,` and those of the second by Ãk,` which

has in the stead of the second yellow boundary, the successor set Xk,`. Our pertinent

crossing questions actually concern the ring fragments Ak,1, Ak,2, . . . (which are of the

legitimate nature). Again, for ease of exposition, let us assume that the first ` − 1

renditions have yellow crossing probabilities in excess of 1− ϑ, i.e., suppose

P(P : Yk−1  Yk,`−1) = κ > 1− ϑ.

Then, we claim, that for ϑ chosen appropriately, the yellow crossing in Ãk,` is not too

small:

P(P : Yk−1  Xk,`) > ϑ.
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Indeed, conditional on the existence of a yellow crossing of the type described in Ak,`−1,

it is only necessary to attach one more (SI) unit of yellow to achieve the desired

connection up to Xk,`. In the usual hexagon tiling problem, this occurs with probability

1/2; in general, to include the models introduced in [10], let us say that this occurs

with probability r. Then we have

P(P : Yk−1  Xk,`) ≥ (1− ϑ) · r ≥ ϑ

if ϑ satisfies

ϑ <
r

1 + r
. (5.1)

It may be envisioned that the process proceeds smoothly till eventually we get an `

large enough so that the desired yellow crossing probability falls into the range (ϑ, 1−ϑ)

– even if this occurs, we are far from done. However, we have already allowed for an

obstruction which is akin to an “uncontrolled approximation”, namely the difference

between the (temporary, temporary) yellow boundaries Xk,` and the (legitimate, tem-

porary) yellow boundaries Yk,` ⊆ Xk,`. As is clear from previous discussions – and has,

in fact been a basis of the derivation – it is the legitimate, temporary yellow boundary

that must actually be considered. In particular, we must account for the possibility

that the yellow crossing probability in Ãk,` is in (ϑ, 1 − ϑ) – or even lies above 1 − ϑ

– but when we replace the yellow boundary Xk,` with the smaller Yk,`, the crossing

probability in Ak,` falls below ϑ.

These circumstances would tend to occur if ω lies deep inside a narrow tunnel which

opens into a wider central region where the sliding is currently taking place; when the

slide reaches the mouth of the tunnel, huge portions of the segment can be lost. In this

case, the appropriate action is in fact to slide backwards: indeed, let us note that this

discontinuity is engendered by the fact that not all legitimate crossings from Yk−1 to

Yk,`−1 can be extended by one SIU to a path to Yk,`. On the other hand, it is the case

that all points on Yk,` are one SIU away from some point in Yk,`−1; this asymmetry is

inherent in the definition of successors. Thus, continuity can be ensured by backsliding

Y`:

Lemma 5.2 (Sliding Scales.) Let Yk, Yk,`, etc., be as described such that P(Yk−1  

Yk,`) < ϑ. Consider F
(k)
0 ≡ Yk,`, F

(k)
1 , F

(k)
2 , . . . successive backward slides (i.e., in

CYk−1
(D∆)) of Yk,`. Let the corresponding yellow segments (relative to Yk−1) G

(k)
j ⊆
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F
(k)
j be constructed as above so that all of G

(k)
j is accessible from Yk−1. Then it is the

case that successive crossing probabilities do not increment too fast, i.e.,

P(Yk−1  G
(k)
j−1 | Yk−1  G

(k)
j ) > r.

Proof. First note that by definition F
(k)
0 ≡ G

(0)
0 and each SIU in G

(k)
j is connected to

some SIU in G
(k)
j−1 and so a crossing to G

(k)
j−1 necessarily implies a crossing to G

(k)
j . (We

re–remind the reader that here we are sliding backwards, so the preceding are exactly

the desired connectivity relation.) It follows, by attaching one more yellow SIU, that

P(Yk−1  G
(k)
j−1 | Yk−1  G

(k)
j ) > r.

For later purposes, we will need a slightly more complex procedure than just sliding

backwards. Supposing that there is a jump in crossing probabilities as described e.g., at

the 2`th–stage, let us consider e.g., the segment Yk,`; by the previous separation claim,

this segment separates Yk−1 from Yk,2`. We backslide as described above, however, we

use Yk,` as a “barrier”: i.e., we only consider the connected component of our neighbor-

hoods in the region bounded by Yk,`, Yk,2` and the relevant portions of ∂Ωm. In point of

fact, we will not exactly use Yk,` but a certain modification thereof. Nevertheless, the

above procedure works for any Zk (replacing Yk,` as a barrier) which separates Yk−1

from Yk,2` and has the property that P(Yk−1  Zk) > 1− ϑ. Notwithstanding, we will

still call the backward slides G
(k)
j ’s (suppressing the Zk dependence).

In any case, on the basis of the above lemma, we may now assert that there exists

an m such that

P(Yk−1  G(k)
m ) ∈ (ϑ, 1− ϑ).

Indeed, the result of the lemma remains true under the modified procedure and so if

it is the case that P(Yk−1  G
(k)
j−1) < ϑ, then

r · P(Yk−1  G
(k)
j ) < ϑ,

and hence P(Yk−1  G
(k)
j ) < 1 − ϑ if r satisfies Equation (5.1). This leads to the

existence of the stated m.

We will then promote G
(k)
m into Yk. As alluded to before, there are additional

modifications to be performed on Yk, but nevertheless we are finished with the S–

construction.

59



5.3.2 The Q–Construction (effective regions)

The S–construction is not sufficient to capture certain irregularities which may be

present in the domain Ω – nor to achieve our purpose. These problems manifest

themselves on two levels: the successive yellow regions may be vastly different in length,

as can be caused by a narrow tunnel suddenly leading to a wide region. On a more

subtle level, there are cases where the S–construction yields consecutive yellow regions

which are of comparable size but the “effective” yellow region where the crossing would

actually take place is in fact much smaller. This is indicative of “pinching” of ∂Ωm

in the vicinity of the current segment. In any case, the problem here is that, in

essence, the process is proceeding too quickly. Thus we will reduce the relevant scales

in order to slow the growth of the evolving neighborhood sequence and possibly perform

some further “backwards” steps. To a first approximation, given YI , a successor YF

is not utilizable for us if it is the case that it is too large relative to the separation

between YI and YF . In this case we will instead consider future segments grown around

some “effective region” determined by some subsegment of YF . The purpose of this

subsubsection is to modify the segment YF into some Y
(e)
F (representing the effective

region) so that it has the correct aspect ratio relative to YI (≡ Y (e)
I ). We will make the

notion of “effective region” precise but first we need a proposition concerning crossing

probabilities of more general topological rectangles:

Proposition 5.3 Let A denote a topological rectangle with sides (L ,R) and (T ,B),

respectively. Consider the following notion of aspect ratio: with

a := dA∞(T ,B), b := dA∞(L ,R),

we set

B = BA = b/a.

Let η > 0, then for any A (= An), there exists some B(η) such that if BA > B(η),

then for the critical percolation problems of interest in this work,

P(L  R) < η

with the above uniform in n.
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Proof. Let x∗ be a point on T and y∗ a point on B where the infimum defining a is

realized and consider a box, denoted by Ga, of side 2a containing these points and a

path pa in A connecting them. It is noted that pa separates L and R. Now consider

a box, denoted by Gb which is of side 2λb for λ . 1 with the same center as the

aforementioned box; it is assumed that λb > a. By the definition of the dA∞– distance,

it is the case that any path in A connecting L to R must have a portion outside Gb

– although L and R may themselves lie within. It is now claimed that any circuit in

the annulus Gb \ Ga separates L from R. Indeed, let P : L  R denote a path in

A. It may be assumed e.g., that

P : L  ∂Gb  pa  R

(the other case is identical). Therefore a portion of P connects ∂Gb to ∂Ga and thus

meets the circuit as claimed.

Now, by standard critical 2D percolation arguments (now so–called RSW argu-

ments) there are of the order log(b/a) independent chances of creating a circuit in

Gb \Ga thus preventing a crossing between L and R and the desired result is estab-

lished.

Henceforth, to avoid inconsequentials, we shall assume that ϑ has been chosen small

enough so that all relevant B’s are certainly greater than two or three. We are now

ready to prove:

Lemma 5.4 (Aspect Ratio Estimate.) Let YI denote some (initial) segment and YF

a successor segment which is constructed as described previously. Let AF denote the

topological rectangle of relevance – of which these are two of the sides – and within

which the crossing problem of current interest takes place. In particular it is assumed

that P(YI  YF ) ∈ (ϑ, 1 − ϑ). Moreover, it is assumed that YF is obtained from YI

by the direct sliding construction, i.e., without invoking the backsliding as was featured

in Lemma 5.2 and the discussions immediately following. Let us denote the separation

distance between YI and YF by JF , i.e., JF := dAF∞ (YI , YF ). Then there exists some B

with 1 < B <∞ and a modification of YF , which we denote by Y
(e)
F , such that

B−1 · JF ≤ ‖Y (e)
F ‖∞ ≤ (3B + 2) · JF + c′ ≤ κ′B · JF
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for some constant c′ and κ′ and

θ′′ ≤ P(YI  Y
(e)
F ) ≤ 1− θ′′,

where θ′′ = ϑ− ϑ2.

Proof. Let B be chosen from Proposition 5.3 corresponding to η = ϑ2. Let us suppose

that ‖YF ‖∞ > 3B ·JF . We define x` and xr as the extreme “left” and “right” endpints

of YF and similarly define y` and yr for YI . Consider the path B`,F which is the “left”

boundary of AF and which is a portion of ∂Ωm that starts at y` and proceeds to x`.

To avoid future clutter, we shall omit the F subscript and, when clear from context

write B` := B`,F . Similarly we have the other blue boundary which is the path Br

starting with xr and proceeding to yr.

The essence of the argument is captured in the simplified version where YI and YF

are (essentially) horizontal regions. In order to expedite the overall process, we shall

first treat this case. The general case – which can certainly be omitted on a preliminary

reading – will be attended to subsequently.

Simplified Version. Note that due to the constraint on all dAF∞ – distances and en-

visioning B � 1, YI and YF must have considerable “overlap”. Let us now define an

auxiliary curve Γ`: in this simplified setup, Γ` is defined to be the leftmost perpendic-

ular extension from YF to YI which does not intersect B` inside the region bounded

by YI and YF and similarly define Γr. (It is noted that despite the nomenclature, Γ`

may actually be to the “right” of Γr.) See Figure 9 which will also be useful for the

up and coming.

We claim that the displacement (along YF ) between Γ` and Γr cannot exceed B ·JF :

first if Γ` were to the left of Γr, then the relevant yellow crossing probability in AF

would be bounded from below by the easy way crossing of the topological rectangle

bounded by Γ`, Γr, YI and YF . By the definition of B this would exceed 1− ϑ2, while

by assumption, AF was constructed so that this yellow crossing probability could not

exceed 1−ϑ. On the other hand, if Γ` were to the right of Γr, then any yellow crossing

would now be forced to traverse the hard way along a topological rectangle with aspect

ratio exceeding B, which again by definition of B would be less than ϑ2 which is again

contrary to the assumption concerning AF .
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Figure 9: Setup described in the proof of Lemma 9 under simplified assumption that

segments are fragments of squares. The constant B here is envisioned to be about 2. Left:

Γ` and Γr situated as anticipated; Yk  Yk+1 is too likely. Right: Γ` and Γr switched

from anticipated placement; here Yk  Yk+1 is too unlikely.

Next, if possible, we will extend the portion of YF which is in between Γ` and Γr

by an amount from YF no more than an additional B · JF on each side. Obviously, we

do this only if space is available, otherwise, e.g., ‖YF ‖∞ is already less than 3B · JF .

We denote as necessary the bounding vertical segments at the end of the extensions

by γ` and γr. In any case, these bounding segments γ`, γr, should they exist will hit

B` ∪Br and we will denote the portions of γ` and γr which connect YF to B` and Br

by τ` and τr, respectively. The portion of YF between τ` and τr together with the τ ’s

themselves constitute our effective region Y
(e)
F . (If no reconstruction is required, then

we may consider τ` = τr = ∅ and set Y
(e)
F ≡ YF .) Notice in particular that ‖τ`‖∞ and

‖τr‖∞ cannot exceed JF .

We now argue that the yellow crossings actually occur between the effective regions

with high “conditional” probability. Consider the event D := {YI  YF }\{YI  Y
(e)
F }.

We first claim that the event D implies the existence of yellow and blue crossings in

fragments of aspect ratio at least B and therefore has probability less than ϑ4.

For simplicity, we will suppose that Γ` is the the left of Γr. In this case – assuming

for non–triviality that YF 6= Y
(e)
F – it may be further supposed without any additional
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loss of generality that YF \Y (e)
F contains points to the right of Γr from which the yellow

crossing producing the event D emanates. Then, the fragment between γr and Γr has

aspect ration B′ with B′ ≥ B. This fragment must be traversed the hard way by a

yellow path in order that (this version of) the event YF \ Y (e)
F  YI occurs. But in

addition, a similar sort of blue path must occur to separate the lowest version of said

yellow path from the yellow boundary region between Γr and γr; the intersection of

these two path events has probability less than ϑ4 and so here the desired result has

been established. Other cases are handled similarly.

The stated upper bound on the crossing probability follows more easily: it suffices

to observe that the probability of a yellow connection between YI and γ` or γr by the

choice of B is bounded by ϑ2.

The General Case. The key point here is to have a tangible construction of Γr and

Γ` along with the associated τr and τ`, at which point the argument proceeds along

the lines of the simplified case. We let xr, . . . ,Br be as defined before. Consider the

composite curve consisting of YF ,Br, the portion of ∂Ωm connecting yr to y` (not

containing ω) and B`. The curve described forms a closed loop whose interior we

denote by C and note particularly that YI must lie in C .

We emphasize that by definition of the sliding procedure, the dAF∞ – distance of

every element of YF to some element of YI is within a few lattice spacings of JF (small

discrepancies may arise due to the extended SIU’s and certain lattice details). Thus let

J ′F = JF + c – for some constant c of order unity – denote the maximal such distance.

Let xα and xβ denote two points along YF with xα to the right of xβ and such that

dAF∞ (xα, xβ) > 2 · J ′F ; thus the boxes of side 2J ′F (i.e., “radius” J ′F ) centered about

these points are disjoint. Note that YI must visit both of these boxes; for simplicity,

let us, if necessary, shrink these boxes by a few lattice spacings (no more than c) so

that YI can only visit the surface of these boxes. We denote the boxes centered at xα

and xβ by bα and bβ, respectively.

Our claim is that (regarding YI as moving from yr to y`) YI must visit bα before

it visits bβ. Indeed, supposing to the contrary that YI visits bβ first, then it is noted

that the curve consisting of the portion of YI from yr till it hits bβ and portions of

∂bβ (plugging into YF ) would divide C into two disjoint components, one containing
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xα (on its boundary) and the other containing y` (on its boundary). Moreover, the

former component contains all of bα ∩ C . Thus YI could not possibly then proceed to

visit ∂bα without crossing the aforementioned separating curve and/or ∂C .

Now consider a sequence of successive non–overlapping boxes b1, b2, . . . bq centered

on points in YF oriented from right to left, so that b1 is centered at xr. All these boxes

have diameter approximately 2J ′F which have been tuned, as above, so that YI just

visits their surfaces. Let us look at the last such box which intersects Br and denote

it by bs. Due to the above claim, it is clear that b1, . . . , bs−1 are all intersected by

Br and, moreover, within each box, the relevant portion of Br separates YF from YI

(at least twice). Indeed, first consider paths B̃r and B̃` outside of Ωm which do not

intersect the b boxes and also connect xr to yr and x` to y`, respectively. Next consider

the domain bounded by YI ∪ YF ∪ B̃r ∪ B̃`; the curve Br (and later also B`) must lie

within this domain. Now on each bj , there are two portions of ∂bj connecting YI to

YF and both of these separate yr from bs within the domain just described.

We will now define Γr to be the portion of ∂bs+1 which is inside AF and connects

YF to YI . (There are, in fact at least two two choices; to be definitive, we choose,

starting from YF , the“rightmost”.) As before, we move from bs to bs−k where bs−k is

the nearest box whose dAF∞ – distance from bs is greater than B · JF . The topological

statements above about Br then permits us to define τr as any (lattice) path between

the center of bs−k and Br within the box. Note in the above that we have tacitly

assumed s ≥ 1, otherwise, e.g., τr = ∅. Finally, Γ`, etc., are defined analogously. With

these tangible definitions of Γr, Γ`, τr and τ`, the proof concludes mutatis mutantis

along the lines of the simplified case. Notice that again, ‖τ`‖∞, ‖τr‖∞ ≤ JF + c ≈ JF

and so the diameter of Y
(e)
F is bounded above as in the statement of this lemma.

As for the stated lower bound on the diameter, let us first note, supposing Y
(e)
F =

YF , that since ‖YF ‖∞ ≥ dAF∞ (B`,Br), if it were the case that ‖YF ‖∞ < B−1 · JF , then

by the choice of B we would conclude that the blue crossing probability is in excess

of 1 − ϑ2, which is impossible. Therefore, ‖YF ‖∞ ≥ B−1 · JF . On the other hand,

if we actually had to perform the effective regions construction, then we clearly have

‖Y (e)
F ‖∞ ≥ B · JF .

We will now address the cases where a successful construction of a YF requires a
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backsliding construction, as featured in Lemma 5.2 and the discussions thereafter. The

relevant barrier segment ZF will be constructed by a modification of YF,L, where L is

the smallest integer larger than JF /2.

We observe that by construction, each box of size L around an element of YF,L is

visited by YI , so with the meaning of bj the same as in the above proof, we let bα be

the leftmost box which is not intersected by Br and bβ the rightmost box which is not

intersected by B`. If it is the case that α < β (considering the orientation to be from

right to left) then we perform effective region construction on YF,L (here we clearly

have ∂Ωm sufficiently close to YF,L so that the construction can be performed with

‖τ`‖∞ and ‖τr‖∞ remaining well–controlled) and set ZF to be the resulting modified

segment.

We are left with the case that α > β; here we will set ZF ≡ YF,L. But let us

note the following fact (which is only non–trivial if β − α > B): if wF,L ⊆ YF,L is any

connected subsegment which traverses more than B of the bj boxes between bα and

bβ, then

P(YI  wF,L) > 1− ϑ2,

where the above crossing is allowed to take place anywhere in the region bounded by

YI , YF,L and the relevant portions of ∂Ωm. Indeed this follows since to prevent such a

connection entails a long way blue crossing with aspect ration in excess of B.

Proposition 5.5 In the cases where YF must be obtained from YI via a backsliding

procedure as described following Lemma 5.2 and above, there exists an m such that

G
(F )
m has the following properties:

1) P(YI  G
(F )
m ) ∈ (ϑ, 1− ϑ);

2) there is some constant κ > 0 such that ‖G(F )
m ‖∞ ≤ κB · L.

Proof. Let us temporarily denote by ỸF the first successor segment such that P(YI  

ỸF ) < ϑ (i.e., the suppressed second index is approximately equal to 2L). First, if

necessary, we perform effective region like construction on ỸF : again, we reiterate that

if the relevant Γ` lies to the right of Γr, then the relevant τ` and τr are well controlled

and the diameter of the effective region obeys the bounds stated in Lemma 5.4 (relative

to J̃F which is the relevant separation distance between YI and ỸF ). On the other hand,

if Γ` is to the left of Γr, then the observation immediately preceding the statement of
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this proposition implies that the separation between Γ` and Γr cannot exceed B · L

and, if necessary, we may perform an additional effective region construction.

In any case, as in Lemma 5.4, we have manufactured a Ỹ
(e)
F whose diameter does

not exceed κ′B · L. Now we will carry out the backsliding procedure starting with

Ỹ
(e)
F with the barrier ZF as described above. We observe that after approximately L

iterations, we will have reached ZF . We will not do more than an additional κ′B · L

iterations (in order to achieve the crossing probability criterion) because if so, we would

have subsumed a portion of ZF at least this large (or perhaps all of it) and, by the

observation immediately preceding the proposition, the crossing probability from YI

would exceed 1 − ϑ2. Thus, m is certainly less than (κ′B + 1) · L. It follows that

‖G(F )
m ‖∞ is less than ‖Ỹ (e)

F ‖∞ + c · m, where the constant c corresponds to increase

in diameter due to the d∞–neighborhood construction. We thus have that ‖G(F )
m ‖∞ is

less than or equal to κB · L for some constant κ, as stated.

We can now set YF to be equal to the G
(F )
m existentiated above and set JF to be

equal to L. For future reference we will adopt κ as the constant bounding the diameter

of all such regions.

5.3.3 The R–Construction (percolative boxes)

Our objectives will eventually be achieved by establishing the existence of monochrome

percolation connections between e.g., (the vicinity of) ω and the central region D∆.

This will be accomplished by establishing a grid of contiguous boxes within each of

the successor ring fragments. This entails a suitable modification of Y
(·)
F , which will

then define the final ring fragment of interest. Most pertinently, as will emerge later,

the sizes of the boxes in neighboring fragments will differ by at most a uniform scale

factor.

Remark 5.6. We remark that in the forthcoming use of boxes, as far as connectivity

properties are concerned, all notions are inherited from the standard 2D square site

lattice, e.g., boxes are connected if they share an edge in common and, dually, ∗–

connected means an edge or corner in common.

Suppose now that YI , YF and JF are such that the conclusion of Lemma 5.4 holds

(particularly, P(YI  YF ) ∈ (θ′′, 1− θ′′)). Let us tile the region enclosed by YI and YF
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(i.e., AF ) by boxes of size 2−r · JF for some r > 0. The boxes under consideration will

include all boxes whose closure intersects the closure of AF ; the precise value of r will

be specified later. We remark that these boxes will be a super–grid for boxes of the

ultimate small scale which will be 2−2r · JF . We start with the larger scale:

Claim. There exists some fixed r0 ≡ r(θ′′) > 0 such that if r > r0 then among the

aforementioned boxes of scale 2−r · JF there is a connected path between YI and YF

by boxes which do not intersect the blue boundaries.

Proof of Claim. Let β denote any box which intersects B`. Then we assert, for r chosen

suitably large, that β or any box in its ∗–connected neighborhood does not meet Br.

Indeed, supposing to the contrary, let us consider the r − 2 annuli of doubling sizes

2−r · JF × [4, . . . , 2r−1] with β at the center. Since we have started at 4× 2−r · JF the

inner ring always contains the ∗–neighborhood of β and since we have ended at 1
2 · JF ,

it cannot be the case that both YF and YI penetrate (any of) these annuli. In each such

annulus, by weak scale invariance of critical percolation, a blue circuit independently

exists with probability at least some λ and each such blue circuit would connect B`

to Br in AF , thereby preventing a yellow crossing. But then for r large enough, the

yellow crossing probability would be too small; indeed,

θ′′ ≤ P(YI  YF ) ≤ (1− λ)r−2.

The above defines r0: (1−λ)r0−2 := θ′′ and so the assertion has been established. Now

the claim will (eventually) follow: let yr and y` denote the left and right endpoints of

YI and moving from y` to yr along YI let β` denote the last (rightmost) box intersected

by YI which also intersects B`. We similarly define β′` along YF and βr, β
′
r relative to

BR. We further define YI , YF , B` and Br: the set YI consists of those boxes which

meet the portion of YI which is after its last exit from β` and before its first entrance

into βr. Similarly, let B` denote those boxes which meet the portion of B` after its

last exit from β` and before its first entrance into β′`. Similarly for YF and Br.

It is seen that save for the four corners mentioned, all these sets are disjoint: the Y

pair are “well separated”, the B pair are (not quite as well) separated due to the above

assertion and, e.g., YI and B` are disjoint save for β` essentially by definition. Now

these sets, which are ∗–connected objects (although not necessarily ∗–connected paths)
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certainly form the boundary of a “crossing problem arena” – we temporarily delete from

consideration all other boxes which meet ∂AF . The desired crossing exists because,

due to the first assertion, we have, for example, that the ∗–connected boundary of B`

is disjoint from Br.

Remark 5.7. For the benefit of the forthcoming, the above display should be modified

to read (1 − λ)r < ϑ2 � θ′′ – where in addition, we have now stipulated ϑ ∼ θ′′ � 1.

This will set our scales. Thus we envision 2r as comparable to B but, in any case, we

certainly have

2r ≥ B

We will now define the current modification to YF :

Definition of Y
(b)
F . Consider now the grid of scale 2−2r · JF – considerably smaller

than the previous grid. Here it is stipulated that r (with r > r0) has been chosen so

as to satisfy

(1− λ)r−1 < (θ′′)2,

with λ being the probability of a monochrome circuit in an annulus where the outer

scale is twice the inner scale. Again we consider the (closed) boxes which have non–zero

intersection with the region AF – and for the immediate future, no others. From this set

we delete all boxes which have non–empty intersection with YF and their ∗–neighboring

boxes.

The remaining boxes may now consist of several components. Nevertheless, we may

temporarily consider all boxes with at least one edge not shared by another box in the

collection to be a boundary box. These “exposed” box–edges form closed circuits –

the edge boundaries of the components. Among these circuits there is to be found a

unique path which begins on B`, ends on Br, have no other encounters with either of

the B’s and which is disjoint from the old YI . This special path is characterized as

follows; we consider a larger set of paths which are allowed to use edges of any box.

These paths have the same general description used above: they connect B` to Br and

consist of whole (box) edges save, possibly, for the first and last wherein occurs the only

encounter with B` ∪Br. Such a set is obviously non–empty since B` is connected to

Br by boxes (even of the larger scale) and the paths are partially ordered with respect

to their separation from YI . The special path is the one that is “furthest” from YI .
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One final modification is required. Consider the boxes which share at least one edge

(or fragment thereof) with the aforementioned path. By the ordering considerations

of the construction, each edge belongs to a unique box (the collection of which in fact

form a ∗–connected chain). Moving from left to right along the path, we define, as

in the context of the larger grid, the box b` to be the rightmost of the boxes which

intersect B` and similarly for br. We now consider the portion of the path connecting

b` to br and adjoin to it the box edges (partial or otherwise) of b` and br so that

overall we have reconstituted a connection between B` and Br. This final step should

be enacted by choosing the path along the box edges to be “as far away” from YI as

possible.

The definition is essentially complete, the above constructed path constitutes the

segment Y
(b)
F . The region A

(b)
F is the topological rectangle with boundaries YI , Y

(b)
F

and the appropriate portions of B` and Br which connect these segments. Finally, we

use the notation

bF := 2−2r · JF

for the scale – sidelength – of the individual boxes.

Remark 5.8. Let us note for future reference that by virtue of having used ∗–connected

neighborhoods, it is the case that there is a full layer of connected boxes separating

YF from Y
(b)
F . The fact that there is a full layer is clear; the fact that this layer

is connected follows from the observation that the boxes which intersect YF were,

certainly, ∗–connected, so the layer represents a portion of the dual circuit surrounding

this set.

We now observe that Y
(b)
F , A

(b)
F etc., have various anticipated properties:

Proposition 5.9 Consider the boundary boxes of A
(b)
F that share portions of their

boundary with Y
(b)
F . Then these boxes form a ∗–connected cluster – and hence Y

(b)
F

itself is connected. Moreover, each such box is connected by a (connected) path of full

boxes to boxes which intersect YI with a path length – measured in number of boxes –

which does not exceed some universal constant l ∈ (0,∞).

Proof. It is noted that by construction, Y
(b)
F is constituted from a non–repeating se-

quence of attached box edges all of which are complete save the first and last. There-

fore, it is manifestly connected and, moreover, the boxes which contribute boundary
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elements to this segment form a ∗–connected chain running from b` to br, inclusive.

We denote this chain by yF and define yI , b` and br in the same fashion as their upper

case counterparts were defined using the larger scale boxes. The region bounded by yF

and appropriate elements of the other sets yI , b` and br form a topological rectangle

along with associated boundaries so that opposing pairs are well separated (as in the

claim for the larger scale boxes) and hence any box in yF can be connected to some

box in yI .

Finally, concerning the length of the connection, let us provide a crude estimate: it

is known that the diameter of Y
(b)
F is bounded by ‖YF ‖∞ ≤ κB ·JF (by Lemma 5.4 and

Proposition 5.5); moreover, every point on Y
(b)
F is separated from some point on YI by

d∞–distance some constant times κB · JF . Thus, a box which is a reasonable multiple

of B · JF centered about YF – let us call it B – contains all of YF and paths between

every point on YF and some point on YI and a substantial neighborhood (e.g., larger

than JF ) of these paths.

Now consider any “microscopic” path P in AF between a point on YF and some

point on YI contained in B and let us denote by bP the set of small boxes visited by P.

Of course, bP may contain boundary boxes from b` and/or br; however, since these are

well–separated, the ∗–connected closure of bP manifestly contains a connected path of

full boxes between yF and yI (indeed, the ∗–connected closure of e.g., b` itself consist

of full boxes). Finally, it is certainly the case that any such path cannot possibly

consist of more boxes than the total number of boxes in the aforementioned bounding

set B. Since both B and the small boxes have area proportional to a universal constant

times J2
F , the result follows for some l.

Our next claim is that the replacement of YF by Y
(b)
F does not substantially alter

the yellow crossing probability:

Claim. Suppose P(YI  YF ) ∈ (θ′′, 1− θ′′), then

θ′′ ≤ P(YI  Y
(b)
F ) <

1− θ′′

(1− (θ′′)2)2
≈ 1− θ′′ + 2(θ′′)2.

Proof of Claim. The lower bound is immediate since a crossing from YI to YF certainly

implies a crossing to Y
(b)
F . The upper bound follows from an easy continuation of

crossings argument: indeed, consider e.g., the “left” endpoint of YF whose grid box we
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surround by an annulus with inner scale 2r ·bF and outer scale 2r times this inner scale.

Let us consider the event G that the rightmost crossing from YI to Y
(b)
F is outside the

inner square defining the above annulus. Then, we have at least r independent chances

– by setting up independent annuli – to continue the rightmost crossing to YF . This

continuation therefore happens with (conditional) probability in excess of 1− (θ′′)2 by

the choice of r and so

P({YI  YF | {YI  Y
(b)
F } ∩G) > 1− (θ′′)2.

On the other hand, let OQ denote the event of a yellow circuit somewhere inside

the bF · 2r × bF · 22r annulus. We note that should the event OQ occur, then, indeed,

the rightmost crossing is to the right of this inner square and so by the choice of r,

P(G) ≥ P(OQ) > 1− (θ′′)2

The desired inequality now follows:

P(YI  YF ) ≥ P(YI  YF | {YI  Y
(b)
F } ∩G) · P({YI  Y

(b)
F } ∩G)

> (1− (θ′′)2)2 · P(YI  Y
(b)
F ).

Here to arrive at the last line we have used the FKG inequality.

Corollary 5.10 Consider the curve, denoted by Y
(b)
F which consists of the outer edges

(i.e., closer to YF ) of the boxes which share an (inner) edge with a box in yF and

attached to B` and Br by an analogous procedure as was used for Y
(b)
F . Then

P(Y
(b)
F  Y

(b)
F ) > 1− (θ′′)2.

Proof. This follows directly from the above argument using the observation that Y
(b)
F

separates YF from Y
(b)
F .

Remark 5.11. We remark that we should think of the above claim “dually”, i.e., that

the complementary bound

θ′′ − c2(θ′′)2 < P(B′`  B′r) ≤ 1− θ′′

(for θ′′ small and some constant c2) holds for blue crossings; here B`,Br now denote the

appropriate “left” and “right” blue boundaries of the topological rectangle formed by

YI and Y
(b)
F . Indeed, as will unfold below, all that is actually used for yellow crossings

is the ability to cross these regions via paths inside the boxes with a probability which

is independent of the details of the region.
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5.4 Induction

We are now ready to assemble all ingredients and describe the full inductive proce-

dure. Our goal is to show that there are box connections between all successive yellow

segments and that the box scale of neighboring layers do not differ by too much.

First let us set out the base case for our induction. Let Y0 := ∂S0(ω) ∩ ∂D∆ be as

described before. If P(Y0  ω) ≥ ϑ, then stop. (Indeed, this is one of the stopping

criterion for our iteration and if it actually occurs on the first step, then clearly the

lattice spacing is too large to be worthy of any detailed consideration.) Otherwise, let

us perform the S,Q,R–constructions to yield some Ŷ1 so that P(Ŷ1  Y0) ∈ (θ′′, 1−θ′′).

Recall that here θ′′ may differ from ϑ due to the O(ϑ2) errors in the Q,R–construction

sections. It is noted that since D∆ has a radius half the maximal amount, for judicious

choice of ϑ, the ancillary constructions, in particular the Q–construction, are actually

not necessary.

We will assume the existence of segments

P0 ≡ Ŷ0, P1 ≡ Ŷ1, . . . , Pk−1 ≡ Ŷk−1, Tk ≡ Ŷk.

(Here thêdenotes modifications to the original segments Y` from theQ,R–constructions.)

The following are our inductive hypotheses:

0) Tk is the box construction version of some Yk and there is some Y k which is the

d∞– neighborhood boundary of Tk such that

i) P(Y k  Tk) ≥ 1− (θ′′)2 (by Corollary 5.10);

ii) d∞(Tk, Yk) > bk (by Remark 5.8);

1) the following conclusions hold for Pk−1 and Tk:

i) P(Pk−1  Tk) ∈ (θ′′, 1− θ′′);

ii) all of Tk can be connected to Pk−1 via boxes of size bk completely unobstructed

by ∂Ωm and further the number of boxes required for such a connection is not in excess

of l (by Proposition 5.9);

iii) it is the case that (see the effective regions construction subsubsection)

B−1 · Jk ≤ ‖Pk−1‖∞ ≤ 22r+1(κB) · Jk, B−1 · Jk ≤ ‖Tk‖∞ ≤ κB · Jk.

2) the conclusions of 1.ii) and 1.iii) also hold for (prior) successive segments P`−1, P`,

1 ≤ ` ≤ k−1; also a weakened version of 1.i) holds for these prior segments: P(Pj−1  
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Pj) ≤ 1− θ′′ (which we think of as a lower bound on the blue crossings).

Here the letter P denotes what is considered a permanent yellow segment whereas

T denotes a temporary segment. Let us note that we will not require the lower bound

on yellow crossing probabilities per se except for the last layer consisting of Pk−1, Tk.

Step 1. We first construct some segment Yk+1 by sliding Tk towards ω and back-

sliding if necessary so that

P(Tk  Yk+1) ∈ (ϑ, 1− ϑ).

Step 2. Next we perform the effective regions construction and the box construc-

tion to yield Ŷk+1 so that P(Tk  Ŷk+1) ∈ (θ′′, 1− θ′′), ‖Ŷk+1‖∞ ≤ κB ·Jk+1 and there

are suitable box connections between Tk and Ŷk+1 with boxes of scale bk+1 = 2−2r ·Jk+1

(see Lemma 5.4, Proposition 5.5 and Proposition 5.9). Notice that we also immediately

have from the bound on the crossing probabilities and Lemma 5.4 that

‖Tk‖∞ ≥ B−1 · Jk+1, ‖Yk+1‖∞ ≥ B−1 · Jk+1.

Step 3. We have now satisfied items 1.i) and 1.ii) of the inductive hypothesis for

the layer (Tk, Ŷk+1).

Step 4. Now we will verify item 1.iii). First we claim that Jk+1 > bk/2.

Indeed, recall that there is a connected neighborhood of boxes separating Tk from

Yk (again see Remark 5.8). The (outer) boundary of this neighborhood is Y k which

by item 0.i) is connected to Tk with too high a probability to consider stopping the

process until at least some portion of the evolving neighborhood boundary reaches past

it. However, by the nature of the neighborhood sliding construction the entire evolving

boundary pushes through this curve coherently. So if the construction of Yk+1 does not

entail a backsliding, then the result immediately follows, in fact without the factor of

two. Now if a backsliding were required, then recall that we used Yk+1,Lk+1
as a barrier

(here Lk+1 is the closest integer to Jk+1/2, as described in the discussions preceding

Proposition 5.5) and so the claim follows by item 0.ii).

Item 1.iii) has now been verified since we now have ‖Tk‖∞ ≤ κB · Jk ≤ 22r+1(κB) ·

Jk+1. All induction hypotheses have been verified, so we set Pk ≡ Tk and Tk+1 ≡ Ŷk+1.

74



The induction can now be continued towards ω, starting with Pk and Tk+1, provided

that P(Tk+1  ω) < ϑ and k + 1 ≤ Γ · log n, with Γ as in the statement of Theorem

3.10 – otherwise we stop.

Remark 5.12. We note particularly that from item 3 in step 4 of the induction, the

percolating boxes are connected going from one layer to the next.

Also, for notational convenience, in the statement of Theorem 3.10, we have reverted

back to using ϑ (so ϑ there corresponds to θ′′ here).

5.5 A Refinement

We will require one additional property of these Harris systems. First let us define

some terminology:

Definition 5.13. Let Ω ⊂ C be a bounded, simply connected domain and Ωm some

interior discretization of Ω. For ω ∈ Ωm, consider the inductive construction as de-

scribed, yielding P1, P2, etc., until the crossing probability between ω and the last P`

is less than ϑ – indicating that we have approximately reached the unit scale – or until

we have succeeded a sufficient number of segments.

We remind the reader that we refer to the topological rectangles formed by succes-

sive P`’s as Harris rings and the amalgamated system of these segments around ω the

Harris system stationed at ω.

For our purposes we will also need to show that for n sufficiently large, for the

marked point corresponding to A, the relevant Harris segments have endpoints lying

in the anticipated boundary regions:

Lemma 5.14 Let Ω ⊆ C be a bounded simply connected domain with marked boundary

prime ends A,B,C,D ∈ ∂Ω (in counterclockwise order) and suppose Ωm is an interior

approximation to Ω with Am, Bm, Cm, Dm ∈ ∂Ωm approximating A,B,C,D. Consider

the hexagonal tiling problem studied in [14] or the flower models introduced in [10] (in

which case we assume the Minkowski dimension of ∂Ω is less than 2) and the Harris

system stationed at Am. Then there is a number vA such that for all m sufficiently

large, all but vA of the Harris segments form conduits from [Dm, Am] to [Am, Bm]. More
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precisely, under uniformization, there exists some η > 0 such that all but vA = vA(η)

of these segments begin and end in the η–neighborhood of the pre–image of A.

Proof. Let ϕ : D→ Ω be the uniformization map with ϕ(0) = z0 for some z0 ∈ D∆ and

let ζA, ζB, ζC , ζD denote the pre–images of A,B,C,D, respectively. Let η > 0 denote

any number smaller than e.g., half the distance separating any of these pre–images. Let

Nη(ζA) denote the η–neighborhood of A and let {rd, rb} denote the pair Nη(ζA) ∩ ∂D

with rd in between ζA and ζD and rb between ζA and ζB. Similarly, about the point

ζC we have Nη(ζA) ∩ ∂D := {sd, sb}.

We denote by Gd the continuum crossing probability from [ζA, rd] to [sd, ζC ] (with

(D; ζA, ζC , sd, rd) regarded as a conformal rectangle) and similarly Gb for the continuum

crossing probability from [rb, ζA] to [ζC , sb]. It is manifestly clear that these are non–

zero since all relevant cross ratios are finite.

Now consider Ω as a conformal polygon with (corresponding) marked points (or

prime ends) A,Rb, B, Sb, . . . Rd (corresponding to ζA, rb, ζB, sb, . . . , rd) and Ωm with

marked boundary points Am, . . . Rdm the relevant discrete approximation. It is em-

phasized, perhaps unnecessarily, that this is just Ωm with A,B,C,D and with four

additional boundary points marked and added in. It follows by conformal invariance

and convergence to Cardy’s Formula that the probability of a crossing in Ωm from

[Rbm , Am] to [Cm, Sbm ] converges to Gb and similarly for the crossings from [Am, Rdm ]

to [Sdm , Cm].

We shall need an additional construct, denoted by Φm which is best described as the

intersection of three events: (i) a yellow connection between ∂D∆ and [Rdm , Sdm ], (ii)

a similar connection between ∂D∆ and [Rbm , Sbm ] and (iii) a yellow circuit in Ωm \D∆.

It is observed that the intersection of these three events certainly implies a crossing

between [Rdm , Sdm ] and [Rbm , Sbm ].

It is noted that item (iii) has probability uniformly bounded from below since D∆

is contained in a circle twice its size. As for the other two, we must return to the

continuum problem in D. Let E ⊆ D denote the preimage of D∆ under uniformization

with corresponding evenly spaced boundary points p1, p2, p3 and p4. Let us pick an

adjacent pair of points – conveniently assumed to be p1 and p2 – which may be envi-

sioned as approximately facing the [sd, rd] segment of ∂D. We now connect rd and p1
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with a smooth curve in D and similarly for sd and p2. It is seen that these two lines

along with the [sd, rd] portion of ∂D and the [p1, p2] portion of E are the boundaries

of a conformal rectangle. We let Ld denote the continuum crossing probability from

[p1, p2] to [sd, rd] within the specified rectangle.

We perform a similar construct involving p3, p4, sb and rb and denote by Lb the

corresponding continuum crossing probability. Thus, as was the case above, in the

corresponding subsets of Ωm, it is the case that as m→∞, the probability of observing

yellow crossings of the type corresponding to the aforementioned crossings in (i) and

(ii) tend to Ld and Lb, respectively. (While of no essential consequence, we might

mention that at the discrete level, the relevant portions of ∂D∆ may be defined to

coincide with the inner approximations of the subdomains we have just considered.)

Let us call Gm the intersection of all these events: Φm and the pair of [Rbm , Rdm ] 

[Sbm , Sdm ] crossings (corresponding to Gb and Gb). Then we have, uniformly in m for

m sufficiently large,

P(Gm) ≥ σ

for some σ = σ(η) > 0.

We next make the following claim:

Claim. Consider the event that there is a blue path beginning and ending on ∂Ωm

that seperates Am from D∆. Then, if the event Gm also occurs, it must be the case

that (modulo orientation) the path begins on [Rbm , Am] and ends on [Am, Rdm ].

Proof of Claim. To avoid clutter, we will temporarily dispense with all m–subscripts.

Note that since Am, Rbm , Bm, Cm, Dm, Rdm divide the boundary into six segments,

there are 1
2 · 6 · 7 = 21 cases to consider and, therefore, twenty to eliminate. Let us

enumerate the cases:

◦ A crossing from [C,A] to [Rb, C] or from [A,C] to [C,Rd] (5 cases): each possibility

is prevented by (at least) one of the yellow crossings between the segments in [Rd, Rb]

and [Sb, Sd].

◦ Corner cases, e.g., at the D corner, [C,D] to [D,Rd] (4 cases): recalling that the

blue path must separate D∆ and A, these are obstructed by the yellow circuit about D∆

which is connected to the opposite R·S boundary, which in this example corresponds to
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[Rb, Sb]. (We note that these circuits are constructed precisely to prevent the possibility

of connections “sneaking” through D∆.)

◦ An [Rd, Rb] segment connected to a [B,C] or a [C,D] segment (4 cases): these

are prevented by the yellow crossing from [Sd, Rd] to [Rb, Sb].

◦ Diagonal (same to same) paths, e.g., [C,D] to [C,D] (6 cases): recalling the

separation clause, these are obstructed by the connection of the circuit around D∆ and

its connection to whichever – or both – R ·S segment which is not where the blue path

begins and ends. In this example this corresponds to [Rb, Sb].

◦ Finally, [D,C] to [C,B]: this is the same as the previous case.

The claim is proved.

With the above in hand, the rest of the proof of this lemma is immediate. Let v′A

denote the number of Harris segments in the system stationed at Am which do not

begin on [Rbm , A] and end on [A,Rdm ]. (I.e., the twenty cases treated above.) Letting

Bm denote the event of a blue circuit of the type described in the claim, we have

1− σ ≥ 1− P(Gm) ≥ P(Bm) ≥ 1− (1− ϑ)v
′
A

which necessarily implies v′A is bounded above (independently of m) by the ratio

log σ/ log(1 − ϑ). Clearly, v′A ≥ vA as in the statement of the lemma so the result

has been established.
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