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EVOLUTION OF MEASURE
Eulerian: : /W\A :
1o H1

Given v;, have flow equation:




CoNTINUITY EQUATION 1

A in mass = flux in/out of infinitesimal volume:
%4V -(pv) =0
ot P

p = (probability) density

v = velocity field

Integrated version for macroscopic volume:

B §, % dx = —§, V- (pv) dx =~ p v+ dS



ConNTINUITY EQuATION 11

Mass of particle constant along trajectories (incompressible):

« ~
¢,
Y

d _dp B
(X, )] = 2+ Vp-v =0,

Therefore,
Vp-v=V-:(pv) =V -v=0

and have weak formulation for measures :
8t,ut + V. (Ntvt) =0

means

]
| Joce+ v dnedi =0 voe 2@ x(0,7)
0



WEAK FORMULATION

Deﬁne (Here T#p = v if for or for any test function ¢ € L*(dv)
any measurable A S@(}’) dv(y) = SW(T(X)) du(x) )
fie = X 1o v(A) = u(T71(A))

Then (formally) Oipee + V - (vepue) = 0O:

pe CERI x (0,T)); Wix,t) = p(Xe(x), &
f 2uplx) + (), Vo)) dpux)
f f Dep(Xe(x), 1) + (ve(Xe(x), Vp(Xe(x))) dpio(x) dt
_ f Rdd—\:(x,t) diio(x) dt

- f (X0, T) = (x,0) dpo(x)

0



HAMILTONIAN DYNAMICS I

Let R?? 5 x = (p, q) = (momentum, position)
1 2 o ,
H(p,q) = §|p| + W(q) = kinetic + potential

Then . .
x=(P)=(° 7Y ™) _svn
q id 0 Hy

Start with measure, infinite dimensional Hamiltonian system?
1(, . 1
K () =7 | IpI” du+ | &(q) du+ 5 | (W= p)(q) du

X = J[VA(1)](p,q) = (—=V(W * 1 + ®)(q), p)

* interaction means velocity field has non—trivial dependence on p; *



FINITE RANGE INTERACTIONS




HAMILTONIAN DyYNAMICS I1

o Infinitesimal conservation of mass certainly holds
o VH LIJVH =V -(IVIH)=0
Should describe by continuity equation:
Orpr + V- (IVA () pue) = 0.
o Energy not pointwise conserved:

d.A (pe)

——(p,q) = [<V%,JV%”> + ajf] (p,q) =

1
dt S0t (Wpuy).

2

* Formally, using continuity equation and supposing |VW/| < B
d ,
|0:(W = )| = | = | Wix —y) dpe(y)| < B [ [TV (pse)| dpse

is locally bounded *

Total energy (integrated over ;) should still be conserved.



HAMILTONIAN ODE ON WASSERSTEIN SPACE

L. Ambrosio and W. Gangbo. Hamiltonian W. Gangbo, H. K. Kim, and T. Pacini. Differ-
ODE’s in the Wasserstein Space of Probability ential forms on Wasserstein space and infinite
Measures. Comm. in Pure and Applied Math., dimensional Hamiltonian systems. To appear
61, 18 53 (2007). in Memoirs of AMS.

Definition (Hamiltonian ODE) T yg(th) — (—CD, OO] (proper, lowersemicontinuous).
A.C. curve {ut}o, 77 is a Hamiltonian ODE w.r.t. 7 if

ve € L3(due),  |velli2(pr € L0, T)
such that

at,LLt + V- (Jvt,ut) = 0, te (0, T)
vt € Ty, P2(R?) 0 (11t) for a.e., t

Theorem. (Ambrosio, Gangbo) Suppose # : P, (R??) — R satisfies

&| VA (x)| < C(1+ |x])

o If pn = pn L%, u = pL?9 and pn — p then VI, tn, — VA ()
Then given po = po£29:

oThe Hamiltonian ODE admits a solution for t € [0, T]

o t > ut is L(T, puo)-Lipschitz (with respect to the Wasserstein distance)
o If S is A—convex, then ' (u:) = H(f).



WASSERSTEIN DISTANCE

M M
(density) (flow map)
’ ¢#P0 e o.n ‘
s = “(pVp); gp(s1,52) = §pVp1-p2 (v1,v2) = §(v1 - v2)po
(non-flat) (flat)
(Induced distance: XO@@ X1
s —————

d(x0, x1)? = inf{§} gu(e) (%5, %) dt : t > x(t) € M, x(0) = x0, x(1) = x} )

Upshot: F. Otto.
The geometry of dissipative evolution eqns:

. . the porous medium equation.
(90, )2 = infopmoppn § polid — O

Comm. PDE, 26 (2001), 101-174.




A.C. CURVES AND THE CONTINUITY EQUATION

Definition. Let
Pr(RY, Wh)

denote the space of probability measures with bounded second moment equipped with the Wasserstein distance

W) = mind [ b=y dyy) v € T(uw)
Rd xR

T, v) = {7 : v(A x RY) = 1u(A) and v(RY x B) = 1v(B), for all measurable A and B}

Theorem. There is a correspondence:

{A.C. curves in 2,(RY, Wh)} < {velocity fields v € L?(dpu¢)}

via
o1
atlit + V- (thit) =0 and '!1710 m W2(,U't+h’ﬂt)(<) = ” VtHLz(u:) E“:‘:S‘E,S:m
Thus L i
W3 i p2) = min { [ vl O + 9 - () = 0} ﬁ
and

12
T, 2R, W) = (Vg p € CR(RA))



MASS REACHING INFINITY IN FINITE TIME

Condition ().
What about other

We are solving Hamiltonians? E.g.,

at/,tt + V. (JV%”;”) =0; Vt 1= J]ij(ut) (q)

Recall characteristics /\
Xe = ve(X); Xo=id N !

ve(x)| < CA+ |x]) = [Xe| < (1 + [ Xo)):
preserves compact support, second moment...

Explicit Computation. |v;(X:)| = C(1+ [X:)?,R > 1

R—1
[Xt _ 1
[Xol 1—t(R—1)|X|R~1

1
X ~» 00 at time T(X):W<OO
— 1)|x|R—



CONTINUITY EQUATION IN “FINITE VOLUME”
Particles that have ever been in
@\gv\»_g finite region during [0, t]:

blue = good
pink = negligible
red = bad

yellow = gone.

0!

Expect. Under reasonable dynamical conditions, still have

Orpir +V - (IVA () pe) =0 distributionally.



EXAMPLE: QUADRATIC VELOCITY IN 1D

Consider the velocity field and associated trajectories

2 X0
Vil X) = X Xt =
t( ) ) t 1_ tX()

and densities
po =111, pr = Xe#po.

By change of variables, have

pe(y) = polx ' (V) () (v)

. 1
(L4 yt)?
We have then
—2y 2y
S A d r_
Otpe (1+yt)3 an (peve) (1+yt)3

and so
at[)t + (ptvt)/ =0.



REGULARIZATION: FADE WITH ARC LENGTH

Xt = ve(Xp) M, = Mge 3o G(Xo)vs(Xs)] ds

For simplicity, Cs = ¢; later, send ¢ — 0.



INHOMOGENEOUS CONTINUITY EQUATION

(®)  Oepz + V- (vepg) = —€|velpg

Given pg, v, define

(u5)* = X #uo < N
R0 =on(= [ M0 &) /TN
L)
i = REiE)* o=
satisfies (@). N~

Proposition. (#) preserves a—exponential moments for « < ¢, since

distance traveled < arclength

% directly gives global (in space) regularization x



EXISTENCE OF e-DYNAMICS

Lemma. Let pg € Mo ,-. Suppose we have prescribed (time—dependent) velocity
fields v{ satisfying
Vil < €@+ xR

for some constants C,R > 0. Then for 0 < T < o0

o 3 distributional solution ()0, 7] to
Ocpy + V- (v pg) = —elvi |z

Vi e CZ (R x [0, T])), S(;r Srea (Ot + (ve, Vxp)) due dt = —¢ S(;r Spea Vi lp due dt

realized as a linear functional such that

j soduf=j (REw) 0 XE dpio, Ve € Co(R2).
RZd Se

t

o (uf)te[o, 1] is narrowly continuous.

o Preservation of moments.



TOPOLOGIES OF CONVERGENCE

(CF o)Ce Co Cp
cpctly supported vanishing at oo - bounded

J B J a !
distributional weak* narrow

o finite measures = Banach—Alaoglu gives some limit point in weak* topology

o distributional convergence + moment control = narrow convergence

We have Radon measures so if u, — p and A is a Borel set

w(A%) < liminf pun(A) < limsup un(A) < p(A)
n n



TECHNICAL REMARKS

Continuity. Let ¢ € C*(R?9) and suppose t — t*.
Then, with Y, = X 0 X7 1,

t*
[ dut = [0 duzil - j[wso(w)expwj A dv)] dpt|
t

Sovp lE=eFE

Limiting Measures. Suppose 0:u5 + V - (vius) = —e|vg|us for
t € [0, T] and v uniformly locally bounded on [0, T].

For tx € @ n [0, T, have by Banach—Alaoglu
BE, — Mt

Continuity gives extension to all t. Limiting dynamics later...



DEFICIENT HAMILTONIAN ODE 1

Theorem. Let pig € My and 0 < T < o0. Let

H) = §j|p|2 du+J¢(q) du+§j<vv*u><q> d

such that |®(q)| < |q|®, some R > 0. Then there exists a narrowly

continuous path t +— ui € My . such that
Orpiz + V - (IVA (up)pz) = —elIVIA (pp)| -
“Proof”. Time discretization: h = 1/n, vy = IV (1, ) fis,

€,n g,n &,n €,n
,uo e d V0 g /’Ll g Vl o N



DEFICIENT HAMILTONIAN ODE 11

Get
5t,ui’" + V- (IVH (| % ")

") = eIV (") "

Want to take all n — oo:
o Limiting measure for each t by Banach—Alaoglu

o Only dependence of velocity field on measure is the term VW %

» e Have tightness by Markov's inequality:
j LIVW(@—a) dug" (P, q) Sw e =" Me(uo)

= VW % pu7" — VW x ui unif. on cpct sets

e By deficient continuity equation

IVW s p)" — VW s "] < h




UNIFORM IN ¢ CONTROL ON VELOCITY FIELD

To take € — 0 the previous logic can be applied if we can control the velocity field.

b_g Idea: Use the potential
- @ \ \ to rid us of red particles.

Enforce that there exists

rings of no return tending

LA
n ? to infinity...



EXAMPLE: SPHERICALLY SYMMETRIC POTENTIAL

Consider
L
H(p,q) = 5 lpl" + T(|ql)-
Define *—ring by
T(q) < T(L.), forall|g|>|L.|

*—rings are rings of no return, since

2

5 _ 1]dlg| ——
A= 2‘ | TT@ Ve ~
o _ /[ N\
is increasing for t = t,: { ( (.) )
ﬁ_mgzm_@f)m \ N !
dt  dt \de2  de )7 \ /
~__7

and at t, radial velocity is positive.



MORE GENERAL POTENTIALS

If
1

with
|VVW(t,q)| < B, forallt,g,

consider bounding potential u(r), such that

J(r)= B+ max(VCD, Q).
q|=r

Then x—rings of u are rings of no return for original dynamics.

Postulate that u has infinitely many x—rings of no return:



RINGS OF NO RETURN

* c.f., renewal points

for random walks... *




ESTIMATES ON VELOCITY FIELD I

Choose
Q+a< Li(«r),

then G does not contribute to

‘ @ ‘ \ (VW % u5")(q) for g € Bg:

S = blue, G = yellow, O = pink
e Tightness:

L L ITW(p,q = 0)| dif” Sw (S L O) o {pr > 1)
rC><

< no(R? x BE) + po(S m {pe = r}).



ESTIMATES ON VELOCITY FIELD 11

On S, |gs| <L forall0<s<tso

dps
r< < | |-
| Pt ” ds

kle]

ds + |po| < [1(V + TW x s ")(ae)| ds < M.t + oo,

Snfpe=rtc By . xBi,.

e Time evolution: Formally,

2:F"(p,q) = fde (p-V2W(G—q) —e|lv""(p,q)[ VW(G — q)) dus"(p, q).

This can be estimated a similar way, now invoking moment bound on pyg...

o

=




HamiLToNIAN ODE 1

Theorem. Let g € My o, Some a>0and 0 < T < co. Let

A () = ;lel2 du + f¢(q) du+ % J(W*u)(q) du

such that |®(q)| < |q|R, some R > 0. Then there exists
distributional limit (11¢)efo, 7] of (,ui’n)te[o,-r] along some
subsequence (e, nk) such that

ot uy € M is distributionally continuous and

o (kt)¢e[o, 1] Satisfies the continuity equation:

Orpe + V- (IVIA (ue) pe) = 0.



REPRESENTATION FORMULA

o u;'" defined by pushforward: pg’" = X;"#uo, so have representation formula:

Jde w(y) dug"(y) = j (- RE™ o X" duo(x), Ve e CP(RP),

£,n
St

where

S¢ = {x e RP : 31 solution to X = vE(XE), X5 = x, Vs € [0, t]}.
o ug, pt obtained abstractly, so need to retrieve representation formula...

Need to show

Len(SO R o X" dpo — (@ Re) o Xeduo

o If x € S§, then x € Bf(L) for L sufficiently large and show pointwise convergence.

o If x ¢ S¢, argue that (R"" o X{"")(x) — 0 as n — co.

Both cases follow from finite volume convergence of trajectories:



FINITE VOLUME CLOSENESS OF TRAJECTORIES I

Lemma. Let T > 0. Suppose
v™ — v uniformly on K x [0, T]
for any compact K < RP and

sup | sup sup|v/(x)| + Lip(v{, K)
n | te(0,T) xeK
= fx < .

Then given any § > 0

sup  sup | X! — Xs(x)| <6
x€By (L) s€[0,]

for n sufficiently large, where

By (t) := {x: Xs(x) € By, Vs € [0, t]}
(< supp(p0))-




FINITE VOLUME CLOSENESS OF TRAJECTORIES 11

e For n sufficiently large so that |[v" — v| < o and Xs € B, X[ € B 15,

d n n n

s s e G

< [V (X) = v (X)) + v (Xs) — vs(Xs)
< VlLip - 1X = Xsl + o

< fBL+5|X5" — Xs‘ + o.
e By Gronwall and choosing o sufficiently small (n sufficiently large)
o f T
IXP —X7| < —— P45’ < 4.

8145

e Result follows by a bootstrapping argument.

&

Representation formula holds for i and can directly take ¢ — 0:



HaMmiLTtoNiAN ODE 11

Theorem. Let g € My o, Some a>0and 0 < T < co. Let

A () = ;lel2 du + f¢(q) du+ % J(W*u)(q) du

such that |®(q)| < |q|R, some R > 0. Then there exists
distributional limit (11¢)ejo, 77 Of (127)¢e[0, 7] along some
subsequence (k) such that

ot uy € M is distributionally continuous and

o (Kt)¢e[o, 1] Satisfies the continuity equation:

Orpe + V- (IVIA(e)pe) = 0.



PHASE SPACE REGIONS OF NO RETURN

Let L, correspond to *—ring and define

QL*(t) = BL*+(a,(+n)t X BLw

A
R ”
time
where >0, a. =supgep, |V + VW], so that %|ps| < a,,VYs e [0, t].
*

Then:




MONOTONICITY OF MASS

Let 0 < t; < tp. Given any 0 > 0, let L« be such that

/l,o(BL*) < 4.

Then can show for all € = 0,

15, (O, (1)) = g, (Qu, () = 6.

* Could also directly obtain representation formula for p: by invoking no return

property... *



MAss CONVERGENCE?

“mass difference = mass “burned” at oo by e regularization”

Mo — My = Mo — lim Mg
e—0

o Since the function 1 = f ¢ C., mass convergence not immediate.

e Without interaction W, trajectories same for all e = mass convergence: Have
Mg 7 M is well defined. Let § > 0.
(i) Choose L such that pt(Bf) < 6. Then
M < pe(B]) < liminf u$(By) + 8 < M¥ + 6.

(i) For any € > 0, choose L. such that uf(B;_) <. Then

Me = pe(Br.) = pi(Br.) = Mg — 6.

Presence of W = non-trivial dependence of trajectories on measure so a priori:



“COUNTEREXAMPLE” TO MASS CONVERGENCE [

Varying e:
— o distance = )\ ¢ 1
N mass = 1 at time 0
O mass = e~ at time 1
L]
Mt Mf
—9

.
.
® ©

* Mass does not converge at point of discontinuity... *



“COUNTEREXAMPLE” TO MASS CONVERGENCE I1

Varying e:
mass = 1 at time 0
_ mass = e~ at time t — T
mass > 0 at time t
L]
]
[ ]
Mt Mf
——)

*—e Icé

Mass not tending to co fast enough:



STRONGER DYNAMICAL CONDITION

‘ e /(L) < L ring of no
~ return, ¢, L — o0;

Er(t) = {qo :
gt € 0By,
qr € Bo(r)

for some t' < t};
0, (t) = sup{T:

qo € EL(t),

|Ge++| < o0};

7L = sup 0. (t);
t

Require:

lim 7, = 0.
L—x




EXAMPLE: SUPER—QUADRATIC POTENTIAL

Consider T(q) ~ —|q|**R, R > 1. Recall

is increasing provided % > 0. Therefore (for |q| » 1)

d = 1+R
Al oo~ (@) ~ 1g'F" = C+lal, s> 1.

dlg:|

Suppose at time t, [q¢| = Li, =5

> 0. Direct integration of differential inequality:

_ (14 Jqel)?
1+ |gear )t = ‘
e D > T e Da T e

We conclude the particle reaches infinity by time t + 7,,, where

—0 as Ly, >

* 1
Lx



MAss CONVERGENCE ALMOST EVERYWHERE

Theorem. Suppose the stronger dynamical condition holds and suppose pu§ — ;. Let

M; = lim My, M = lim My
@ t/\yt
M? =Tim M, M; = lim ME.

Then
ME < M; < M < M.

In particular, the mass converges at all points of continuity of M;.

“Proof.” Already have M;' < M. To show M < M, :

o Let § >0 and £ = £(L) be such that 1o(Q,(0)c) < 4.

o Foranye>0let 0 < L. < oo be such that uf(Q_(t)c) < 6.

Mg < pg(Qu. (8) + 6 < pi_,, (Qu(t — 7)) + 26



“ONE RING TO RULE THEM ALL”




QUESTIONS AND EXTENSIONS.

o

Meaningful physical systems of relevance?

o

Different inhomogeneous equation?

o Uniqueness of limiting measures? (under investigation)

O

Stronger topology?



THANK YOU



