Convergence to SLE_6 for Percolation Models (joint with I. Binder & L. Chayes)

Helen K. Lei

August 14, 2009

Introduction

- Setup & Scaling Limit
- ▶ Conformal Invariance & Cardy's Formula
- Statement of Result
- Percolation Assumptions

Framework

- Schramm's Principle
- ▶ Framework: LSW, '04 & Smirnov, '06
- Crossing Domain Markov Property

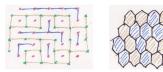
Equicontinuity of Crossing Probabilities

- ▶ RSW and Plausibility
- ► "Counterexample"
- Nodoublingback
- Quantification and Scales
- Logical Reductions
- ► Topological Arguments

Setup and Scaling Limit

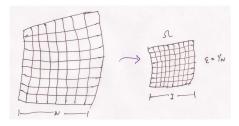
1.
$$\Omega \subset \mathbf{R}^2$$
 with $M(\partial \Omega) < 2$
 $(M(\partial \Omega) = \limsup_{\vartheta \to 0} \frac{\log \mathcal{N}(\vartheta)}{\log(1/\vartheta)})$

2. Tile with some regular lattice at scale ε



- 3. Perform percolation at criticality
- 4. Taking scaling limit: $\varepsilon \to 0$

5. Crossing probability? Law of interface?



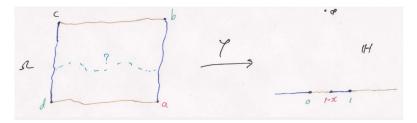
《曰》 《圖》 《臣》 《臣》

ъ

Conformal Invariance & Cardy's Formula

Conformally invariant: $\varphi: \Omega_1 \to \Omega_2$

 $C_0(\Omega_2, \varphi(a), \varphi(b), \varphi(c), \varphi(d)) = C_0(\Omega_1, a, b, c, d)$



$$F(x) := C_0(\mathbf{H}, 1 - x, 1, \infty, 0) = \frac{\int_0^x [s(1 - s)]^{-2/3} ds}{\int_0^1 [s(1 - s)]^{-2/3} ds}$$

32

Sac

Should be lattice independent, but so far:

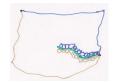
- Smirnov (2001)
- Camia, Newman, Sidoravicius (2001, 2003)
- Chayes & Lei (2007)

Theorem

Let Ω and Ω_{ε} be as described. Let $a, c \in \partial \Omega$ and set boundary conditions on Ω_{ε} so that the Exploration Process runs from a to c. Let μ_{ε} be the probability measure on curves inherited from the Exploration Process, and let us endow the space of curves with the (weighted) sup-norm metric. Then, under reasonable assumptions on the percolation model,

$$\mu_{\varepsilon} \Longrightarrow \mu_{0}$$





Sac

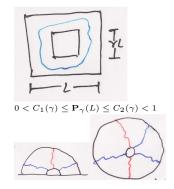
・ロット 本語マ ネヨマ

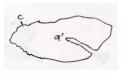
where μ_0 has the law of chordal SLE₆.

If γ_1, γ_2 are two curves, then the sup-norm is given as $\operatorname{dist}(\gamma_1, \gamma_2) = \inf_{\varphi_1, \varphi_2} \sup_t |\gamma_1(\varphi_1(t)) - \gamma_2(\varphi_2(t))|$

Percolation Assumptions

- ► RSW theory & FKG inequalities: Scale-invariant bounds on existence of ring in annuli
- ► BK-type inequalities: $\mathbf{P}(A \circ B) \leq \mathbf{P}(A)\mathbf{P}(B)$
- ▶ Universal multi–arm estimates:
 - ▶ full-space 5-arm
 - ▶ half-space 3-arm
- Definition of Exploration Process leading to a class of admissible domains: the class is closed under deletion of initial portion of explorer path $(M(\partial \Omega) < 2$ is preserved)
- Cardy's Formula for admissible domains





◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Schramm's Principle

(I) Conformal Invariance

$$\varphi:\Omega\to\varphi(\Omega)$$

then

$$\varphi \# \mu(\Omega, a, c) = \mu(\varphi(\Omega), \varphi(a), \varphi(c))$$

(II) Domain Markov Property

 $\mu(\Omega,a,c)\mid_{\gamma'}=\mu(\Omega\setminus\gamma',a',c)$

*** law for random curves satisfies (I) & (II) \iff SLE_{κ} ***

Framework: LSW, '04 & Smirnov, '06

1. Show any limit point is supported on Löewner curves

- view μ_{ε} as measures on compact $\subset \overline{\Omega}$ gives some limit point
- Aizenman-Burchard (1999) gives limit supported on curves (BK is useful here)
- ▶ 5-arm and 3-arm estimates used to show limit supported on Löewner curves

now can describe limit via Löewner evolution with random w(t)

2. Take limit of Crossing Domain Markov Property

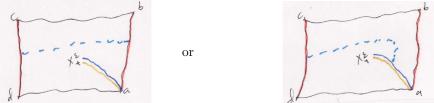
 $C_{\varepsilon}(\Omega \setminus X_{[0,s]}, X_s, b, c, d) = \mathbf{E}_{X_{[s,t]}}[C_{\varepsilon}(\Omega \setminus X_{[0,t]}^{\varepsilon}, X_t^{\varepsilon}, b, c, d) \mid X_{[0,s]}]$

- 3. Expand at ∞ to learn $\kappa = 6$
 - $|C_0(\Omega_s, X_s, b, c, d) E_{\mu'}[C_0(\Omega_t, X_t, b, c, d) | X_{[0,s]}]| \le \operatorname{error}$
 - ► conformal map to **H**: $\left|F\left(\frac{g_s(b)-w(s)}{g_s(b)-g_s(d)}\right) - E_{\mu'}\left[F\left(\frac{g_t(b)-w(t)}{g_t(b)-g_t(d)}\right) \mid X_{[0,s]}\right]\right| \leq \text{error}$ no Domain Markov Property yet
 - Expand g_t at ∞ , Taylor expand F: $E(w(t) | w(s)) = w(s), E(w(t)^2 - 6t | w(s)) = w(s)^2 - 6s$ Lévy's characterization implies $\kappa = 6$

uses conformal invariance and exact form of Cardy's Formula

Crossing Domain Markov Property

Ask for conditional crossing probability, then either



In either case, have crossing in the corresponding slit domain, so

$$C_{\varepsilon}(\Omega, a \mid X_{[0,t]}) = C_{\varepsilon}(\Omega \setminus X_{[0,t]}, X_t^{\varepsilon})$$

Using two times 0 < s < t and taking expectation, we get

$$C_{\varepsilon}(\Omega \setminus X_{[0,s]}, X_s) = \mathbf{E}_{X_{[s,t]}}[C_{\varepsilon}(\Omega \setminus X_{[0,t]}, X_t)]$$

・ロト ・ 西ト ・ ヨト ・ ヨト

Э

For simplicity, consider

$$C_arepsilon(\Omega,a) = \mathbf{E}^{\mu_arepsilon}_{X^arepsilon_{[0,t]}}[C_arepsilon(\Omega\setminus X^arepsilon_{[0,t]},X^arepsilon_t)]$$

Have 3 types of ε 's:

- ▶ "coarseness" of X
- ► measure

▶ percolation scale

for the first 2, can coarsen space of curves and use $\mu_{\varepsilon} \rightharpoonup \mu'$

So really need

"
$$\int C_{\varepsilon} d\mu_{\varepsilon} \to \int C_0 d\mu'$$
 "

Have no uniform convergence, instead, uniform (equi)continuity:

Lemma

Given $\theta > 0$, $\exists \eta > 0$ and there exists a set Ψ , such that

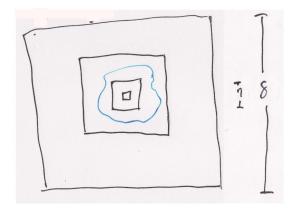
 $\forall \varepsilon \text{ small enough } (\varepsilon \ll \eta), \text{ for } \gamma_1 \notin \Psi, \text{ and } \text{Dist}(\gamma_1, \gamma_2) < \eta:$

1. $|C_{\varepsilon}(\Omega \setminus \gamma_1) - C_{\varepsilon}(\Omega \setminus \gamma_2)| < \theta$

2. $\mu_{\varepsilon}(\Psi) < \theta$

The same conclusion holds for μ' .

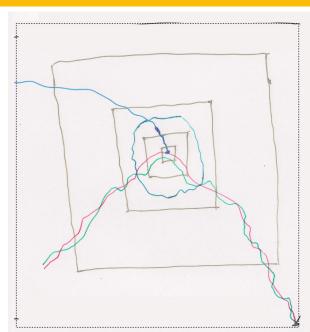
- ロ ト - 4 回 ト - 4 □



 $\log(\delta/\eta)$ annuli $\mathbf{P}(\exists \text{ ring}) \ge \alpha \text{ in each}$

$$\begin{aligned} \mathsf{P}(\nexists \operatorname{ring}) &\leq (1 - \alpha)^{\log(\delta/\eta)} \\ &\leq (\eta/\delta)^{\alpha} \end{aligned}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで



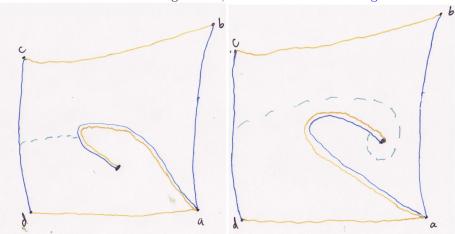
 $\begin{array}{l} \operatorname{dist}(\gamma_{1},\gamma_{2}) < \eta, \\ \text{w.p.} \to 1 \\ \text{as} \\ \eta/\delta \to 0 \\ \text{crossing for} \\ \Omega \setminus \gamma_{2} \\ \text{is also crossing for} \\ \Omega \setminus \gamma_{2} \end{array}$

토 🛌 🗄

Sac

< A

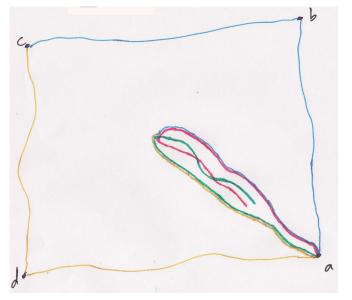
However...



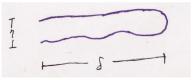
Curves are 2-sided: Starting from a, the blue side is on the right:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ = のへぐ

``Counterexample''



 $\delta/\eta\text{--doublingback:}$



・ロト ・ 四ト ・ ヨト ・ ヨー

500

 $\mathbf{P}(\exists \ \delta/\eta \text{-doublingback}) \le e^{-c(\delta/\eta)}$

for $\varepsilon \ll \eta$ (by RSW and BK)

note scale invariance: only depends on δ/η

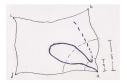
Multiscale version:

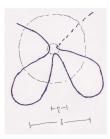
 $\log \delta/\theta$ scales, $\kappa - v$ bad box if in > 1 - v fraction of scales have κ -doublingback

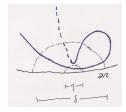
$$\mathbf{P}(\exists \kappa \neg v \text{ bad box}) \leq rac{C}{ heta^2} \left(rac{ heta}{\delta}
ight)^lpha$$

• Many scales: $\eta \ll \vartheta' \lesssim \vartheta \ll \delta_3 \ll \delta_2 \ll \delta_{3/2} \ll \delta_1 \ll \Delta_4 \ll \tilde{\Delta} \lesssim \Delta \ll \Delta_1 \ll 1$

▶ The set Ψ :

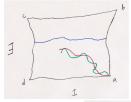


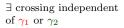


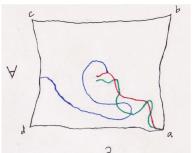


3 Cases

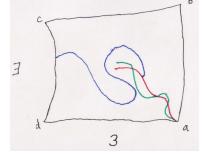
Sufficient to show w.h.p. crossing for $\Omega \setminus \gamma_1 \to$ crossing for $\Omega \setminus \gamma_2$: 3 cases (which disjointly partition the percolation configuration space)







all crossings land on γ_1 and pass through γ_2 \longrightarrow w.h.p.

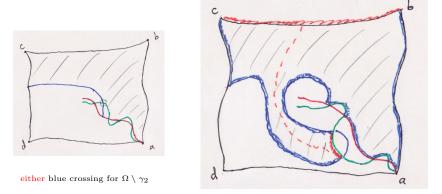


not in case 1 and \exists crossing which lands on γ_1 and does *not* pass through γ_2

- ロ ト - 4 回 ト - 4 □

Reduction to Case 3

If in case 2 (all crossings land on γ_1 and pass through γ_2), then



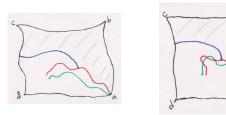
or case 2 with yellow \leftrightarrow blue, 2 \leftrightarrow 1

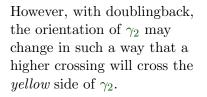
Sac

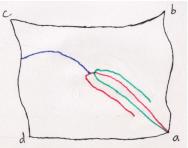
In case 2, sufficient to RSW continue blue crossing to γ_2

Reduction to Highest Crossing

If in case 2, then highest crossing (in the domain $\Omega \setminus \gamma_1$) satisfies conditions of case 2 (lands on γ_1 but does *not* pass through γ_2):

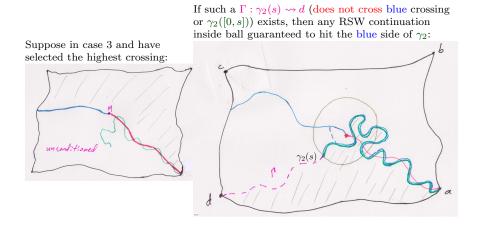




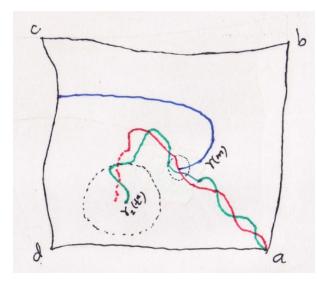


This can be handled. To illustrate this sort of argument...

Correct Topological Picture



The Point $\gamma(t^*)$

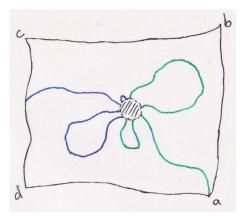


- ► RSW $\rightarrow \gamma_2(t^*)$ far from blue crossing
- No doublingback $\rightarrow \gamma_2(t_*)$ is far from $\gamma_2([0,s])$
- Suffices to show $\exists \Gamma : \gamma_2(t^*) \to d$ avoiding blue crossing and $\gamma_2([0, s])$

Multiply Connected Domains

Basically, need to show w.h.p., $\gamma_2(t^*) \in C_{F_g}(d)$, where

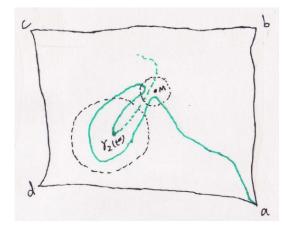
 $F_g = \Omega \setminus [\gamma_2([0,m]) \cup B_\eta(M) \cup \text{blue crossing}]$



990

Note F_g has small components and $C_{F_g}(b)$ & $C_{F_g}(d)$

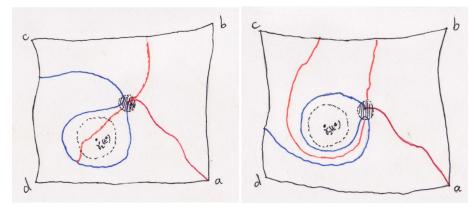
Small Components: Green Pods



Being inside a green pod means γ_2 makes a triple visit to $B_\eta(M)$.

イロト イポト イモト イモト 三日

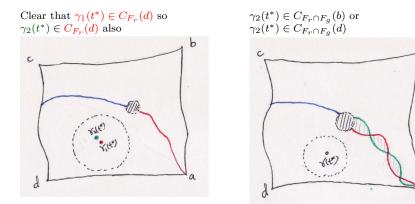
Small Components: Blue Pods



Highest crossing means being inside a blue pod implies 5 long arms emanating from $B_{\eta}(M)$, which has vanishing probability, since $M(\gamma) < 2$.

Large Components

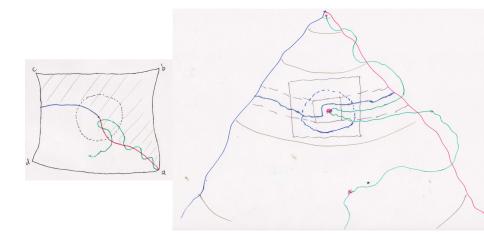
Remains to show $\gamma_2(t^*) \notin C_{F_q}(b)$. Now assume no small components:



Conclude $\gamma_2(t^*) \in C_{F_g}(d)$

a

Continuation of Crossing



▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□▶ ▲□