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2Background & Smirnovʼs Proof

Work of Smirnov takes place on the triangular site lattice, equivalently hexa-
gon tiling of  C.

w/prob p.

w/prob (1–p).

Central Practical Goal

 Critical at p
C
 =  1/2   

Uniquely specified by boundary and analyticity conditions, hence conformally invariant.

As lattice spacing tends to zero, u(z) converges to a harmonic function.

u(z) = P (U(z)),U(z):
A

B

C

z



3Background & Smirnovʼs Proof

Key Ideas

I. Harmonic Triples (120 degree symmetries)

•  u +  i
3 (v - w), etc. are analytic functions.

•  Equilateral triangle:  u, v and w are linear and do satisfy Cardyʼs formula.  

• 120 degree Cauchy-Riemann type equations like

II. Lattice Functions

•  Boundary conditions are easy and lattice independent.

•  Main difficulty: Cauchy-Riemann Equations.

Dŝu = D(τ ŝ)v τ = exp( 2π i
3 );

Boundary/derivative conditions seen from the lattice functions.

Enough to show on an arbitrary domain u, v, w satisfy the same boundary/derivative condi-
tions as on the equilateral triangle (solution to the same conformally invariant problem).
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Discrete Derivatives and Color Switching

•  The discrete derivative is given by 

which is seen to equal
u(z + â) − u(z)

z
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P [U(z + â ) \ U(z)] - P [U(z) \ U(z + â )] = Ua
+(z) - Ua

− (z)



The CR relations: let â  & b̂  be two lattice vectors as shown, then

i.e. the probabilities of the two “CR–pieces” are the same. 

This together with some analysis is enough to push through a proof. 

Unconditioned region
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4bBackground & Smirnovʼs Proof

Ua
+ = Wb

+



5Background & Smirnovʼs Proof

Difficulties With Other Lattices

shift for CR

“collision”

It is a miracle of the triangular site lattice that these innocuous looking CR relations hold 
without apology.  E.g., on the square lattice:

Here “collision” problems occur when trying to switch colors.



6Triangular Bond Model

Model based on triangular lattice bond percolation problem.
L. Chayes and H.K. Lei, Random Clus-
ter Models on the Triangular Lattice, 

to appear in J. Statist. Phys

(1)  Bonds independently blue: p / not–blue: (1–p).

(2)  On each up–pointing triangle – 8 configurations – 
may as well reduce vis–á–vis connectivity properties:{

(3)  Now a locally correlated percolation 
problem.  Self–dual (via ★   – ▲  transforma-
tion) at a = e.  And critical – ae > 2s2 [CL].

a s e

(4)  Note, s = 0 (i.e. a+e = 1) is exactly triangular site percolation problem:

Claim:



7Triangular Bond Model

Add in single bond events (probability s ≠ 0)
Introducing split hexagons 

into the problem.⇔

Remark:

Unfortunately, full triangular bond lattice problem too hard.  Need (local) correlations.



8aModel Under Consideration

Tile the domain with hexagons, some of which are 
designated to be irises, such that flowers are disjoint.

•  Iris can be blue, yellow, or mixed with probabilities a, a (a   ≡  e) 
and s, respectively (so 2a+3s = 1), 

•  Non-irises can only be blue or yellow, with equal probability.

•  In triggering situations, where the iris ceases to be an iris.  
Note this introduces local correlations.

Geometric Setup

Rules

•  Disjoint flowers are independent.

Objects of consideration: 

flowers, irises, petals.

EXCEPT



8bModel Under Consideration

Hope to restore some color symmetry flower by flower.  Indication this may work:

Flowers

Triggering

Not good enough.  Need triggering.

•   3
16  of all possible configurations on a flower.

•  The $$price$$ we pay: 

•  Lose FKG in general (but still have it for path events) 

•  On the bright side, these deviations due to triggering reassure us that our model is indeed differ-
ent from the triangular site model and cannot be viewed as an “easy” limit of it.

•  A host of other difficulties to follow.

x

x

aa

b b

Reflection/color reversal gives 1-1 and onto map between the colors.  



9Path Designates

We have no microscopic color symmetry, so need to consider paths “modulo flowers”.  

Path Designates

A path going through a flower enters at some entrance 
petal and exits at some exit petal.  

A path designate specifies the path outside of flowers but 
only specifies the entrance/exit petals for flowers - in order.  

Given a path designate , we let  denote the event 
that there is a realization of  in blue.  Similar for   .

As a collections of paths, not useful as a partition of the configuration space.

We generalize these notions in the obvious way to the case of multiple flowers and multiple visits to a single flower.

For our purposes, we do not let a path designate start on an iris.

BUT ESSENTIAL FOR OBTAINING COLOR SYMMETRY.

As geometric objects, problematic since not specific enough.



10Color Symmetry Without Conditioning

Let r and ′r  denote non-iris hexagons).  Then the probability of a monochrome path between r 
and ′r  is the same in blue as it is in yellow.  

Lemma 1

We prove the result flower by flower and then concatenate:

Let  denote a flower and let  denote a collection of petals of .  Let  
denote the event that all the petals in  are blue and that they are blue con-
nected in the flower.  Let  denote a similar event in yellow.  Then

We will in fact need the multiset version of Lemma 1.1 (i.e.   and ) but due to 
limitations of flower size, these cases do not present any additional difficulty.

For all ,

Given this local result, the lemma follows by an inclusion-exclusion argument.



11Color Symmetry Without Conditioning

Lemma 1  +  periodic floral arrangement  +  ae ≥ 2s2 can be used to establish 
typical critical behavior: 

•  No percolation of yellow or blue.

•  Rings in annuli (with uniform probability) @ all scales.

•  Power law bounds on connectivities.

But for us, this is just the beginning.  We must face up to problem of 
color symmetry for transmissions in presence of conditioned paths.



12Color Symmetry Under Conditioning

For CR need to change color in presence of conditioning.

PROBLEM

Example:

Transmission Ports

Conditioned Sites

1
2  (Trigger)

+ +
a + 2s

SOLUTION  

Rethink the meaning of disjoint



13Color Symmetry Under Conditioning

When blue at disadvantage, allow blue conditioned petals to be shared with some probability.

When blue at advantage, forbid from touching blue petals used by the conditioned set.

PREVIOUS EXAMPLE

Always fine

with probability
s

2(a + 2s) .

Lemma 2  

DEUS EX MACHINA

There exists a set of random variables and corresponding *-rules (laws for 
random variables) such that the conclusion of lemma 1 holds in the presence 
of conditioning.



14Crossing Probabilities

What does all this mean for our functions uN   , vN and wN ?  (N denotes lattice spacing of N −1) 

z
A

C

B

u(z)

z
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w(z)

z
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v(z)

STRATEGY

I.  Prove what we want for *-versions of the functions: 
 and .

∉{0,1}

II.  Then do some analysis to show e.g.  .



15Crossing Probabilities

color switching lemma + a contour argument + more    gives (I).  

General picture of (II) is 

fn (x)

x

fn (x)
~

x

•  Path satisfying “event” only 
come near z with vanishingly 
small probability. 

• Path of a configuration in  
∆   not close to z lead 

to “five and a half” arms, which oc-
cur with vanishingly small probability.

z
A

C

B
5 1

2  arm event



16Summary of Technical Difficulties

The $$price$$ of color symmetry:

I. FKG inequality and RSW lemmas.
•  FKG was ostensibly difficult, but the assumption of a2 ≥ 2s2 and the result in [CL] made it easy.
•  For RSW, among other difficulties, had to actually read Kestenʼs book. 
•  Tragedy of RSW: lost rights to arbitrary floral arrangements.

II. Arms and Exponents.
•  A five and a half arm argument, along with a three arm argument in the complement of a line segment 
was needed to show equivalence of Carleson-Cardy functions. 

•  Due to local correlations, standard KvB or Reimerʼs inequality does not apply, needed old fashioned con-
ditioning argument.

III. Full Flower  vs. “Used” Flower.
•  This was needed in the conditioning argument in II.  

•  Seemingly “obvious”, but involved meticulous and systematic consideration of all possibilities.

IV. The Iris in Cauchy-Riemann Switch.

•  No sensible mechanism to have path designate start @ iris.  CR–relations require effort.

V.  Producing the Lowest Path for Conditioning (loop erasure).



17Loop Erasure

Had to condition on “lowest” paths, need to ensure some paths are self-avoiding/non-self-touching. 

Unconditioned region

z

A

C

B
z � â

PROBLEM

The *-paths are NOT self-avoiding/non-self-touching.

QUICK CURE

Take a geometric path and delete all loops.

COMPLICATIONS

I.   Must keep loops that “capture” z.
II.  Random variables may cause unwanted 
“dumping” after deletion of loops.

When is a path *-good? 

•  First pass through flower is “free”.

•  Pass N through flower takes petals used by first N-1 passes as conditioned set.

Must receive “permission” from all relevant random variables!



Example

1

2

3

5

4

6

z

In fact, the statement that the fully reduced version of 
Γ (i.e. all loops erased except for the one necessary 
for “capture” of z) satisfies the event is false:  

 = {5,  2}
 = {3,  6}

 = {2,  6}
 = {3}

Transmission: (a + 2s)

Trigger

Transmission: 1
2

4

3

5

1

6

2

4

3

5

1

6

2

18Loop Erasure

THE TRUTH

Can reduce half the path (from boundary to first bottleneck of loop with z in interior).  

This is all we need.



19Conclusion

(I)  Wrap–Up.  After much work, result is that lattice functions uN    , vN & wN for this  
model converge to the “Cardy–Carleson” functions.

Pretty much a complete proof that the continuum limits of both systems are exactly 
the same;  Reasonable and fairly robust statement of universality.

I.e. the same result as for triangle site lattice model.

Central dogma for theory of critical phenomona since the 1960ʼs.

(II)  Limitations  
 (a)  Not a standard (well known) percolation model.
 (b)  Within context of model, didnʼt get most complete result.

(c)  Aside from some practical (and technical) considerations, did not learn much about 
the nature of and convergence to continuum limit – beyond what was already known.

Although model does indeed have parameters –“some generality”.


